1887

Abstract

Bifidobacteria represent one of the most numerous groups of bacteria found in the gastrointestinal tract of humans and animals. In man, gastrointestinal bifidobacteria are associated with health effects and for this reason they are often used as functional ingredients in food and pharmaceutical products. Such applications may benefit from or require a clear and reliable bifidobacterial species identification. The increasing number of available bacterial genome sequences has provided a large amount of housekeeping gene sequences that can be used both for identification of bifidobacterial species as well as for understanding bifidobacterial evolution. In order to assess their relative positions in the evolutionary process, fragments from seven conserved genes, , , , , , and , were sequenced from each of the currently described type strains of the genus . The results demonstrate that the concatenation of these seven gene sequences for phylogenetic purposes allows a significant increase in the discriminatory power between taxa.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64233-0
2006-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2783.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64233-0&mimeType=html&fmt=ahah

References

  1. Dellaglio F., Felis G. 2005 Taxonomy of lactobacilli and bifidobacteria. Probiotics and Prebiotics: Scientific Aspects New Zealand: Caister Academic Press;
    [Google Scholar]
  2. Dong X., Xin Y., Jian W., Liu X., Ling D. 2000; Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. Int J Syst Evol Microbiol 50:119–125 [CrossRef]
    [Google Scholar]
  3. Favier C. F., Vaughan E. E., de Vos W. M., Akkermans A. D. L. 2002; Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1989; phylip–Phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  6. Grill J. P., Crociani J., Ballongue J. 1995; Characterization of fructose-6-phosphate phosphoketolases purified from Bifidobacterium species. Curr Microbiol 31:49–54 [CrossRef]
    [Google Scholar]
  7. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  8. Jian W., Zhu L., Dong X. 2001; New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 51:1633–1638 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Kullen M. J., Brady L. J., O'Sullivan D. J. 1997; Evaluation of using a short region of the rec A gene for rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiol Lett 154:377–383 [CrossRef]
    [Google Scholar]
  11. Ludwig W., Schleifer K. H. 1999; Phylogeny of bacteria beyond the 16S rRNA standard. ASM News 65:752–757
    [Google Scholar]
  12. Masco E., Ventura M., Zink R., Huys G., Swings J. 2004; Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp.nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. Int J Syst Evol Microbiol 54:1137–1143 [CrossRef]
    [Google Scholar]
  13. Matsuki T., Watanabe K., Tanaka R., Fukuda M., Oyaizu H. 1999; Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65:4506–4512
    [Google Scholar]
  14. Meile L., Ludwig W., Rueger U., Gut C., Kaufmann P., Dasen G., Wenger S., Teuber T. 1997; Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Syst Appl Microbiol 20:57–64 [CrossRef]
    [Google Scholar]
  15. Meile L., Rohr L. M., Geissmann T. A., Herensperger M., Teuber M. 2001; Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase gene ( xfp ) from Bifidobacterium lactis . J Bacteriol 183:2929–2936 [CrossRef]
    [Google Scholar]
  16. Miyake T., Watanabe K., Watanabe T., Oyaizu H. 1998; Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol Immunol 42:661–667 [CrossRef]
    [Google Scholar]
  17. Ouwehand A. C., Salminen S., Isolauri E. 2002; Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82:279–289 [CrossRef]
    [Google Scholar]
  18. Perrière G., Gouy M. 1996; WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  19. Sambrook J., Fritsch E. F., Maniatis T. 2001 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Scardovi V., Trovatelli L. D. 1974; Bifidobacterium animalis (Mitsuoka) comb. nov. and the “ minimum ” and “ subtile ” groups of new bifidobacteria found in sewage. Int J Syst Bacteriol 24:21–28 [CrossRef]
    [Google Scholar]
  21. Schaeffer P. M., Headlam M. J., Dixon N. E. 2005; Protein–protein interactions in the eubacterial replisome. IUBMB Life 57:5–12 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  23. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  24. Teichmann S. A., Mitchison G. 1999; Is there a phylogenetic signal in prokaryote proteins?. J Mol Evol 49:98–107 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  26. Ventura M., Zink R. 2003; Comparative sequence analysis of the tuf and recA genes and restriction fragment length polymorphism of the internal transcribed spacer region sequences supply additional tools for discriminating Bifidobacterium lactis from Bifidobacterium animalis . Appl Environ Microbiol 69:7517–7522 [CrossRef]
    [Google Scholar]
  27. Ventura M., Elli M., Reniero R., Zink R. 2001a; Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol 36:113–121 [CrossRef]
    [Google Scholar]
  28. Ventura M., Reniero R., Zink R. 2001b; Specific identification and targeted characterization of Bifidobacterium lactis from different environmental isolates by a combined multiplex-PCR approach. Appl Environ Microbiol 67:2760–2765 [CrossRef]
    [Google Scholar]
  29. Ventura M., Canchaya C., van Sinderen D., Fitzgerald G. F., Zink R. 2004a; Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl Environ Microbiol 70:3110–3121 [CrossRef]
    [Google Scholar]
  30. Ventura M., van Sinderen D., Fitzgerald G. F., Zink R. 2004b; Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie van Leeuwenhoek 86:205–223 [CrossRef]
    [Google Scholar]
  31. Ventura M., Canchaya C., Zink R., Fitzgerald G. F., van Sinderen D. 2004c; Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional and phylogenetic analyses. Appl Environ Microbiol 70:6197–6209 [CrossRef]
    [Google Scholar]
  32. Ventura M., Zink R., Fitzgerald G. F., van Sinderen D. 2005a; Gene structure and transcriptional organization of the dna K operon of Bifidobacterium breve UCC 2003 and application of the operon in bifidobacterial tracing. Appl Environ Microbiol 71:487–500 [CrossRef]
    [Google Scholar]
  33. Ventura M., Fitzgerald G. F., van Sinderen D. 2005b; Genetic and transcriptional organization of the clpC locus in Bifidobacterium breve UCC 2003. Appl Environ Microbiol 71:6282–6291 [CrossRef]
    [Google Scholar]
  34. Ventura M., Canchaya C., Bernini V., Del Casale A., Dellaglio F., Neviani E., Fitzgerald G. F., van Sinderen D. 2005c; Genetic characterization of the Bifidobacterium breve UCC 2003 hrcA locus. Appl Environ Microbiol 71:8998–9007 [CrossRef]
    [Google Scholar]
  35. Yin X., Chambers J. R., Barlow K., Park A. S., Wheatcrof R. 2005; The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase ( xfp ) is conserved among Bifidobacterium species within a more variable region of the genome and both are useful for strain identification. FEMS Microbiol Lett 246:251–257 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64233-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64233-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error