1887

Abstract

Bacteria in the family are increasingly recognized to play important roles in the degradation of organic matter during and following algal blooms. A novel heterotrophic, rod-shaped, aerobic, yellow-pigmented and gliding bacterium was isolated from a seawater sample collected in the Bay of Blanes in the north-western Mediterranean Sea. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that the bacterium was closely related to members of the genus within the family , phylum . Phenotypic, genotypic, chemotaxonomic and phylogenetic analyses supported the creation of a novel species to accommodate this bacterium, for which the name sp. nov. is proposed. The type strain is MED 217 (=CECT 7118=CCUG 51940).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64232-0
2006-07-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1489.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64232-0&mimeType=html&fmt=ahah

References

  1. Abell, G. C. J. & Bowman, J. P. ( 2005; ). Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51, 265–277.[CrossRef]
    [Google Scholar]
  2. Bowman, J. P. ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868.
    [Google Scholar]
  3. Bowman, J. P. & McCuaig, R. D. ( 2003; ). Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69, 2463–2483.[CrossRef]
    [Google Scholar]
  4. Bowman, J. P., McCammon, S. A., Lewis, T. & Nichols, D. S. ( 1998; ). Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144, 1601–1609.[CrossRef]
    [Google Scholar]
  5. Callies, E. & Mannheim, W. ( 1980; ). Deoxyribonucleic acid relatedness of some menaquinone-producing Flavobacterium and Cytophaga strains. Antonie van Leeuwenhoek 46, 41–49.[CrossRef]
    [Google Scholar]
  6. Colwell, R. R., Citarella, R. V. & Chen, P. K. ( 1966; ). DNA base composition of Cytophaga marinoflava sp. nov. determined by buoyant density measurements in cesium chloride. Can J Microbiol 12, 1099–1103.[CrossRef]
    [Google Scholar]
  7. Cottrell, M. T. & Kirchman, D. L. ( 2000; ). Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66, 1692–1697.[CrossRef]
    [Google Scholar]
  8. Fautz, E. & Reichenbach, H. ( 1980; ). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8, 87–91.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package. Cladistics 5, 164–166.
    [Google Scholar]
  10. Gerhardt, P. ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  11. Glöckner, F. O., Fuchs, B. M. & Amann, R. ( 1999; ). Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65, 3721–3726.
    [Google Scholar]
  12. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  13. Kirchman, D. L. ( 2002; ). The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39, 91–100.
    [Google Scholar]
  14. Kirchman, D. L., Yu, L. & Cottrell, M. T. ( 2003; ). Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware Estuary. Appl Environ Microbiol 69, 6587–6596.[CrossRef]
    [Google Scholar]
  15. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  16. Nedashkovskaya, O. I., Suzuki, M., Vysotskii, M. V. & Mikhailov, V. V. ( 2003a; ). Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum Cytophaga–Flavobacterium–Bacteroides. Int J Syst Evol Microbiol 53, 81–85.[CrossRef]
    [Google Scholar]
  17. Nedashkovskaya, O. I., Suzuki, M., Vysotskii, M. V. & Mikhailov, V. V. ( 2003b; ). Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga–Flavobacterium–Bacteroides. Int J Syst Evol Microbiol 53, 1281–1286.[CrossRef]
    [Google Scholar]
  18. Nedashkovskaya, O. I., Vancanneyt, M., Dawyndt, P. & 9 other authors ( 2005; ). Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov. Int J Syst Evol Microbiol 55, 1033–1038.[CrossRef]
    [Google Scholar]
  19. Nedashkovskaya, O. I., Kim, S. B., Vancanneyt, M. & 9 other authors ( 2006; ). Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa. Int J Syst Evol Microbiol 56, 161–167.[CrossRef]
    [Google Scholar]
  20. Nichols, P. D., Guckert, J. B. & White, D. C. ( 1986; ). Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5, 49–55.[CrossRef]
    [Google Scholar]
  21. Nichols, D. S., Nichols, P. D. & McMeekin, T. A. ( 1993; ). Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci 5, 149–160.
    [Google Scholar]
  22. Pinhassi, J., Azam, F., Hemphälä, J., Long, R. A., Martinez, J., Zweifel, U. L. & Hagström, Å. ( 1999; ). Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquat Microb Ecol 17, 13–26.[CrossRef]
    [Google Scholar]
  23. Pinhassi, J., Sala, M. M., Havskum, H., Peters, F., Guadayol, Ò., Malits, A. & Marrasé, C. ( 2004; ). Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70, 6753–6766.[CrossRef]
    [Google Scholar]
  24. Riemann, L., Steward, G. F. & Azam, F. ( 2000; ). Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66, 578–587.[CrossRef]
    [Google Scholar]
  25. Sly, L. I., Blackall, L. L., Kraat, P. C., Tien-Shan, T. & Sangkhobol, V. ( 1986; ). The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5, 139–156.[CrossRef]
    [Google Scholar]
  26. Suzuki, M. T., Preston, C. M., Chavez, F. P. & DeLong, E. F. ( 2001; ). Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat Microb Ecol 24, 117–127.[CrossRef]
    [Google Scholar]
  27. Tan, T. L., Joiris, C. R., Glansdorff, N. & Rüger, H.-J. ( 1999; ). Dominance of oligotrophic bacteria in surface waters above the Gunnerus and Astrid Ridges, Antarctic Ocean. Arch Hydrobiol Spec Issues Advanc Limnol 54, 237–253.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64232-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64232-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error