1887

Abstract

Bacteria in the family are increasingly recognized to play important roles in the degradation of organic matter during and following algal blooms. A novel heterotrophic, rod-shaped, aerobic, yellow-pigmented and gliding bacterium was isolated from a seawater sample collected in the Bay of Blanes in the north-western Mediterranean Sea. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that the bacterium was closely related to members of the genus within the family , phylum . Phenotypic, genotypic, chemotaxonomic and phylogenetic analyses supported the creation of a novel species to accommodate this bacterium, for which the name sp. nov. is proposed. The type strain is MED 217 (=CECT 7118=CCUG 51940).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64232-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1489.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64232-0&mimeType=html&fmt=ahah

References

  1. Abell G. C. J., Bowman J. P. 2005; Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51:265–277 [CrossRef]
    [Google Scholar]
  2. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  3. Bowman J. P., McCuaig R. D. 2003; Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483 [CrossRef]
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Lewis T., Nichols D. S. 1998; Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al . 1993) as Psychroflexus gondwanense gen. nov., comb. nov.. Microbiology 1441601–1609 [CrossRef]
    [Google Scholar]
  5. Callies E., Mannheim W. 1980; Deoxyribonucleic acid relatedness of some menaquinone-producing Flavobacterium and Cytophaga strains. Antonie van Leeuwenhoek 46:41–49 [CrossRef]
    [Google Scholar]
  6. Colwell R. R., Citarella R. V., Chen P. K. 1966; DNA base composition of Cytophaga marinoflava sp. nov. determined by buoyant density measurements in cesium chloride. Can J Microbiol 12:1099–1103 [CrossRef]
    [Google Scholar]
  7. Cottrell M. T., Kirchman D. L. 2000; Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697 [CrossRef]
    [Google Scholar]
  8. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1989; phylip – phylogeny inference package. Cladistics 5:164–166
    [Google Scholar]
  10. Gerhardt P. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Glöckner F. O., Fuchs B. M., Amann R. 1999; Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Kirchman D. L. 2002; The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100
    [Google Scholar]
  14. Kirchman D. L., Yu L., Cottrell M. T. 2003; Diversity and abundance of uncultured Cytophaga -like bacteria in the Delaware Estuary. Appl Environ Microbiol 69:6587–6596 [CrossRef]
    [Google Scholar]
  15. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  16. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003a; Reichenbachia agariperforans gen. nov., sp. nov. a novel marine bacterium in the phylum Cytophaga–Flavobacterium–Bacteroides . Int J Syst Evol Microbiol 53:81–85 [CrossRef]
    [Google Scholar]
  17. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003b; Vitellibacter vladivostokensis gen. nov., sp. nov. a new member of the phylum Cytophaga–Flavobacterium–Bacteroides . Int J Syst Evol Microbiol 53:1281–1286 [CrossRef]
    [Google Scholar]
  18. Nedashkovskaya O. I., Vancanneyt M., Dawyndt P. 9 other authors 2005; Reclassification of [ Cytophaga ] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen.nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov. Int J Syst Evol Microbiol 55:1033–1038 [CrossRef]
    [Google Scholar]
  19. Nedashkovskaya O. I., Kim S. B., Vancanneyt M. 9 other authors 2006; Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa . Int J Syst Evol Microbiol 56:161–167 [CrossRef]
    [Google Scholar]
  20. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55 [CrossRef]
    [Google Scholar]
  21. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci 5:149–160
    [Google Scholar]
  22. Pinhassi J., Azam F., Hemphälä J., Long R. A., Martinez J., Zweifel U. L., Hagström Å. 1999; Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquat Microb Ecol 17:13–26 [CrossRef]
    [Google Scholar]
  23. Pinhassi J., Sala M. M., Havskum H., Peters F., Guadayol Ò., Malits A., Marrasé C. 2004; Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70:6753–6766 [CrossRef]
    [Google Scholar]
  24. Riemann L., Steward G. F., Azam F. 2000; Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66:578–587 [CrossRef]
    [Google Scholar]
  25. Sly L. I., Blackall L. L., Kraat P. C., Tien-Shan T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5:139–156 [CrossRef]
    [Google Scholar]
  26. Suzuki M. T., Preston C. M., Chavez F. P., DeLong E. F. 2001; Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat Microb Ecol 24:117–127 [CrossRef]
    [Google Scholar]
  27. Tan T. L., Joiris C. R., Glansdorff N., Rüger H.-J. 1999; Dominance of oligotrophic bacteria in surface waters above the Gunnerus and Astrid Ridges, Antarctic Ocean. Arch Hydrobiol Spec Issues Advanc Limnol 54:237–253
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64232-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64232-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error