Reclassification of strains LMG 11494 and LMG 11984 as sp. nov. Free

Abstract

A polyphasic study revealed taxonomic heterogeneity among reference strains of the species . Representative strains of and related taxa were investigated by partial sequence analysis of the housekeeping gene encoding the alpha-subunit of phenylalanyl-tRNA synthase (). Species-specific clusters were delineated for all taxa studied except for two strains, LMG 11494 and LMG 11984, respectively isolated from cheese and wheat, which occupied a distinct position. Their phylogenetic affiliation was determined using 16S rRNA gene sequence analysis and it was found that both strains (with 99.9 % gene sequence similarity between them) belonged to the group, with nearest neighbours and (gene sequence similarities of 99.2 and 98.1 %, respectively). Further genotypic and phenotypic studies, including fluorescent amplified fragment length polymorphism, DNA–DNA hybridization and DNA G+C content, clearly demonstrated that the two strains represent a single novel taxon for which the name sp. nov. is proposed (type strain LMG 11984=ATCC 53295).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64215-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1553.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64215-0&mimeType=html&fmt=ahah

References

  1. Coenye T., Falsen E., Vancanneyt M., Hoste B., Govan J. R. W., Kersters K., Vandamme P. 1999; Classification of Alcaligenes faecalis -like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49:405–413 [CrossRef]
    [Google Scholar]
  2. de Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Gancheva A., Pot B., Vanhonacker K., Hoste B., Kersters K. 1999; A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst Appl Microbiol 22:573–585 [CrossRef]
    [Google Scholar]
  5. Gevers D., Huys G., Swings J. 2001; Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36 [CrossRef]
    [Google Scholar]
  6. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  7. Guarneri T., Rossetti L., Giraffa G. 2001; Rapid identification of Lactobacillus brevis using the polymerase chain reaction. Lett Appl Microbiol 33:377–381 [CrossRef]
    [Google Scholar]
  8. Kandler O., Weiss N. 1986; Genus Lactobacillus Beijerinck 1901, 212AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1209–1234 Edited by Sneath P. H. A., Mair N. S., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  10. Meroth C. B., Hammes W. P., Hertel C. 2004; Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov. Syst Appl Microbiol 27:151–159 [CrossRef]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  12. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005a; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [CrossRef]
    [Google Scholar]
  13. Naser S. M., Vancanneyt M., De Graef E. 8 other authors 2005b; Enterococcus canintestini sp. nov., from faecal samples of healthy dogs. Int J Syst Evol Microbiol 55:2177–2182 [CrossRef]
    [Google Scholar]
  14. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics pp  493–521 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Schleifer K. H., Ludwig W. 1995; Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18:461–467 [CrossRef]
    [Google Scholar]
  17. Sohier D., Coulon J., Lonvaud-Funel A. 1999; Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis . Int J Syst Bacteriol 49:1075–1081 [CrossRef]
    [Google Scholar]
  18. Spiller M. A. 1987; A mixture of a Lactobacillus brevis and Saccharomyces dairensis for preparing leavening barm . US Patent 4,666,719 19 May 1987 US Patent Office;
  19. Stiles M. E., Holzapfel W. H. 1997; Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29 [CrossRef]
    [Google Scholar]
  20. Švec P., Vancanneyt M., Devriese L. A., Naser S. M., Snauwaert C., Lefebvre K., Hoste B., Swings J. 2005a; Enterococcus aquimarinus sp. nov., isolated from sea water. Int J Syst Evol Microbiol 55:2183–2187 [CrossRef]
    [Google Scholar]
  21. Švec P., Vancanneyt M., Koort J., Naser S. M., Hoste B., Vihavainen E., Vandamme P., Swings J., Björkroth J. 2005b; Enterococcus devriesei sp. nov., associated with animal sources. Int J Syst Evol Microbiol 55:2479–2484 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. 2001; Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24:520–538 [CrossRef]
    [Google Scholar]
  24. Torriani S., Clementi F., Vancanneyt M., Hoste B., Dellaglio F., Kersters K. 2001; Differentiation of Lactobacillus plantarum , L. pentosus and L. paraplantarum species by RAPD-PCR and AFLP. Syst Appl Microbiol 24:554–560 [CrossRef]
    [Google Scholar]
  25. Valcheva R., Korakli M., Onno B., Prévost H., Ivanova I., Ehrmann M. A., Dousset X., Gänzle M. G., Vogel R. F. 2005; Lactobacillus hammesii sp. nov., isolated from French sourdough. Int J Syst Evol Microbiol 55:763–767 [CrossRef]
    [Google Scholar]
  26. Vancanneyt M., Neysens P., De Wachter M. 8 other authors 2005; Lactobacillus acidifarinae sp. nov. and Lactobacillus zymae sp. nov., from wheat sourdoughs. Int J Syst Evol Microbiol 55:615–620 [CrossRef]
    [Google Scholar]
  27. Vogel R. F., Bocker G., Stolz P. 7 other authors 1994; Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int J Syst Bacteriol 44:223–229 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64215-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64215-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed