1887

Abstract

Thirteen strains of a novel spore-forming, Gram-positive, mesophilic heterotrophic bacterium were isolated from spacecraft surfaces (Mars Odyssey Orbiter) and assembly-facility surfaces at the Jet Propulsion Laboratory in California and the Kennedy Space Center in Florida. Phylogenetic analysis of 16S rRNA gene sequences has placed these novel isolates within the genus , the greatest sequence similarity (99.9 %) being found with . However, these isolates share a mere 91.2 % sequence similarity with , rendering their 16S rRNA gene-derived relatedness suspect. Furthermore, DNA–DNA hybridization showed only 54–66 % DNA relatedness between the novel isolates and strains of . rep-PCR fingerprinting and previously reported matrix-assisted laser desorption/ionization time-of-flight mass spectrometry protein profiling clearly distinguished these isolates from . Phenotypic analyses also showed some differentiation between the two genotypic groups, although the fatty acid compositions were almost identical. The polyphasic taxonomic studies revealed distinct clustering of the tested strains into two distinct species. On the basis of phenotypic characteristics and the results of phylogenetic analyses of 16S rRNA and gene sequences, repetitive element primer-PCR fingerprinting and DNA–DNA hybridization, the 13 isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FO-36b (=ATCC BAA-1126=NBRC 100820).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64189-0
2006-08-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1735.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64189-0&mimeType=html&fmt=ahah

References

  1. Altschul S. A., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Anonymous. 1980 NASA standard procedures for the microbiological examination of space hardware , NHB5340.1B Pasadena, CA: National Aeronautics and Space Administration;
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. de Bruijn F. J. 1992; Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187
    [Google Scholar]
  5. Dickinson D. N., La Duc M. T., Satomi M., Wineforder J. D., Powell D. H., Venkateswaran K. 2004; MALDI-TOF MS compared with other polyphasic taxonomy approaches for the identification and classification of Bacillus pumilus spores. J Microbiol Methods 58:1–12 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Johnson J. L. 1981; Genetic characterization. In Manual of Methods for General Bacteriology pp  450–472 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Kempf M. J., Cheng F., Kern R., Venkateswaran K. 2005; Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5:391–405 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. La Duc M. T., Nicholson W., Kern R., Venkateswaran K. 2003; Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5:977–985 [CrossRef]
    [Google Scholar]
  11. La Duc M. T., Kern R., Venkateswaran K. 2004a; Microbial monitoring of spacecraft and associated environments. Microb Ecol 47:150–158 [CrossRef]
    [Google Scholar]
  12. La Duc M. T., Satomi M., Venkateswaran K. 2004b; Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol 54:195–201 [CrossRef]
    [Google Scholar]
  13. La Duc M. T., Satomi M., Agata N., Venkateswaran K. 2004c; gyrB as a phylogenetic discriminator for members of the Bacillus anthracis cereus thuringiensis group. J Microbiol Methods 56:383–394 [CrossRef]
    [Google Scholar]
  14. Nicholson W. L., Setlow P. 1990; Sporulation, germination, and outgrowth. In Molecular Biological Methods for Bacillus pp  391–450 Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  15. Puleo J. R., Fields N. D., Bergstrom S. L., Oxborrow G. S., Stabekis P. D., Koukol R. 1977; Microbiological profiles of the Viking spacecraft. Appl Environ Microbiol 33:379–384
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sambrook J., Fritch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . Technical Note 101: Newark, DE: MIDI, Inc;
    [Google Scholar]
  19. Satomi M., Kimura B., Mizoi M., Satou T., Fujii T. 1997; Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836 [CrossRef]
    [Google Scholar]
  20. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T. 2002; Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum , description of Pseudospirillum gen.nov., Oceanobacter gen. nov. and Terasakiella gen. nov.and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52:739–747 [CrossRef]
    [Google Scholar]
  21. Satomi M., Oikawa H., Yano Y. 2003; Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53:491–499 [CrossRef]
    [Google Scholar]
  22. Satomi M., Kimura B., Hayashi M., Okuzumi M., Fujii T. 2004; Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy. Int J Syst Evol Microbiol 54:163–167 [CrossRef]
    [Google Scholar]
  23. Schaeffer P., Millet J., Aubert J.-P. 1965; Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54:704–711 [CrossRef]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Thompson F. L., Thompson C. C., Li Y., Gomez-Gil B., Vandenberghe J., Hoste B., Swings J. 2003; Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53:753–759 [CrossRef]
    [Google Scholar]
  29. Venkateswaran K., Moser D. P., Dollhopf M. E. 10 other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  30. Venkateswaran K., Satomi M., Chung S., Kern R., Koukol R., Basic C., White D. 2001; Molecular microbial diversity of a spacecraft assembly facility. Syst Appl Microbiol 24:311–320 [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  32. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  33. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.64189-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64189-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error