Two bacterial strains, CP153-3 and CP177-2, were isolated from biological soil crusts on the Colorado Plateau, USA, and assigned to the genus , according to 16S rRNA gene sequence analysis and phenotypic characteristics. The strains were Gram-positive, aerobic and psychrotolerant and showed positive catalase and negative oxidase reactions. Cells were motile in young cultures, motility consisting of subtle jerking motions, but no flagella could be detected. The strains shared high 16S rRNA gene sequence similarity (99.7 %) and DNA–DNA relatedness (99 %). They contained -diaminopimelic acid in the cell wall, the major menaquinone was MK-7(H) and the predominant fatty acids were C 9 and iso-C. A low DNA–DNA hybridization value of 20 % with the type strain of the type species of the genus , , as well as phenotypic differences, indicated that the isolates belong to a novel species, for which the name sp. nov. is proposed. Strain CP177-2 (=ATCC BAA-1038 =DSM 16676) was chosen as the type strain. An emended description of the genus is also presented. Further, two new orders are created to accommodate several families previously classified in the order Rainey 1997. The first, ord. nov., encompasses the families , and , and the second, ord. nov., includes the family .


Article metrics loading...

Loading full text...

Full text loading...



  1. Babu, S. S. V., Shareef, M. M., Shetty, A. P. K. & Shetty, K. T.(2002). HPLC method for amino acids profile in biological fluids and inborn metabolic disorders of aminoacidopathies. Indian J Clin Biochem 17, 7–26.[CrossRef] [Google Scholar]
  2. Belnap, J.(1993). Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Nat 53, 89–95. [Google Scholar]
  3. Belnap, J.(1994). Potential role of cryptobiotic soil crust in semiarid rangelands. In Proceedings – Ecology and Management of Annual Rangelands, pp. 179–185. Edited by S. B. Monsen & S. G. Kitchen. Ogden, UT: USDA Forest Service, Intermountain Research Station.
  4. Belnap, J.(2002). Impacts of off road vehicles on nitrogen cycles in biological soil crusts: resistance in different US deserts. J Arid Environ 52, 155–165.[CrossRef] [Google Scholar]
  5. Belnap, J. & Gardner, J. S.(1993). Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53, 40–47. [Google Scholar]
  6. Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E.(1977). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100, 221–230.[CrossRef] [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  8. Johnson, S. L., Budinoff, C., Belnap, J. & Garcia-Pichel, F.(2005). Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7, 1–12.[CrossRef] [Google Scholar]
  9. Kates, M.(1972).Techniques of Lipidology: Isolation, Analysis and Identification of Lipids. Edited by T. S. Work & E. Work. New York: Elsevier.
  10. Kim, M. K., Na, J. R., Lee, T. H., Im, W. T., Soung, N. K. & Yang, D. C.(2007).Solirubrobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57, 1453–1455.[CrossRef] [Google Scholar]
  11. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  12. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  14. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  15. Monciardini, P., Cavaletti, L., Schumann, P., Rohde, M. & Donadio, S.(2003).Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int J Syst Evol Microbiol 53, 569–576.[CrossRef] [Google Scholar]
  16. Reddy, G. S. N. & Garcia-Pichel, F.(2005).Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 55, 1295–1299.[CrossRef] [Google Scholar]
  17. Reddy, G. S. N. & Garcia-Pichel, F.(2006). The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52, 345–357.[CrossRef] [Google Scholar]
  18. Reddy, G. S. N. & Garcia-Pichel, F.(2007).Sphingomonas mucosissima sp. nov. and Sphingomonas dessicabilis sp. nov., isolated from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57, 1028–1034.[CrossRef] [Google Scholar]
  19. Reddy, G. S. N., Aggarwal, R. K., Matsumoto, G. I. & Shivaji, S.(2000).Arthrobacter flavus sp. nov., a psychrophilic bacterium isolate from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50, 1553–1561.[CrossRef] [Google Scholar]
  20. Reddy, G. S. N., Nagy, M. & Garcia-Pichel, F.(2006).Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 56, 51–58.[CrossRef] [Google Scholar]
  21. Reddy, G. S. N., Potrafka, R. & Garcia-Pichel, F.(2007).Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000. Int J Syst Evol Microbiol 57, 2014–2020.[CrossRef] [Google Scholar]
  22. Singleton, D. R., Furlong, M. A., Peacock, A. D., White, D. C., Coleman, D. C. & Whitman, W. B.(2003).Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53, 485–490.[CrossRef] [Google Scholar]
  23. Stackebrandt, E.(2004). Will we ever understand? The undescribable diversity of the prokaryotes. Acta Microbiol Immunol Hung 51, 449–462.[CrossRef] [Google Scholar]
  24. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L.(1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef] [Google Scholar]
  25. Steiner, R. A., Fried, B. & Sherma, J.(1998). HPTLC determination of amino acids in snail-conditioned water from Biomphalaria glabrata, two strains of Helisoma trivolis, and Lymnaea elodes. J Liq Chromatogr Relat Technol 21, 427–432.[CrossRef] [Google Scholar]
  26. Suresh, K., Reddy, G. S. N., Sengupta, S. & Shivaji, S.(2004).Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54, 457–461.[CrossRef] [Google Scholar]
  27. Takahashi, Y., Matsumoto, A., Morisaki, K. & Ōmura, S.(2006).Patulibacter minatonensis gen. nov., sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int J Syst Evol Microbiol 56, 401–406.[CrossRef] [Google Scholar]
  28. Tamaoka, J.(1986). Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 123, 251–256. [Google Scholar]
  29. Tamaoka, J., Katayama-Fujimura, Y. & Kuraishi, H.(1983). Analysis of bacterial menaquinone mixture by high performance liquid chromatography. J Appl Bacteriol 54, 31–36.[CrossRef] [Google Scholar]
  30. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  31. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  32. Yakimov, M. M., Lunsdorf, H. & Golyshin, P. N.(2003).Thermoleophilum album and Thermoleophilum minutum are culturable representatives of group 2 of the Rubrobacteridae (Actinobacteria). Int J Syst Evol Microbiol 53, 377–380.[CrossRef] [Google Scholar]
  33. Zarilla, K. A. & Perry, J. J.(1984).Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137, 286–290.[CrossRef] [Google Scholar]
  34. Zarilla, K. A. & Perry, J. J.(1986). Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. Int J Syst Bacteriol 36, 13–16.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 1, pp. 87 - 94

Comparision of phenotypic, genotypic and chemotaxonomic characteristics among the members of the orders ord. nov., ord. nov. and Rainey 1997 emend. Reddy and Garcia-Pichel

Comparison of fatty acid methyl esters among members of the orders ord. nov. and

[PDF file of Supplementary Tables S1 and S2](99 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error