sp. nov., sp. nov. and sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan Free

Abstract

Six strains representing three novel species were isolated from deep-sea sediment in Suruga Bay, Japan, at a depth of 2406–2409 m. On the basis of 16S rRNA gene sequence analysis, the isolated strains, c931, c941, d943, c952, d954 and c959, are closely affiliated with members of the genus . The hybridization values for DNA–DNA relatedness between these strains and reference strains were significantly lower than that which is accepted as the phylogenetic definition of a species. On the basis of their distinct taxonomic characteristics, the isolated strains represent three novel species, for which the names sp. nov. (three strains, type strain c931=JCM 11836=DSM 17170), sp. nov. (two strains, type strain c941=JCM 13041=DSM 17171) and sp. nov. (type strain c959=JCM 11835=DSM 17177) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64173-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1607.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64173-0&mimeType=html&fmt=ahah

References

  1. Allen E. E., Facciotti D., Bartlett D. H. 1999; Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum strain SS9 at low temperature and high pressure. Appl Environ Microbiol 65:1710–1720
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. New York: Cambridge University Press;
    [Google Scholar]
  3. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov.,novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  5. DeLong E. F., Franks D. G., Yayanos A. A. 1997; Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas , Shewanella , and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761 [CrossRef]
    [Google Scholar]
  8. Hazel J. R., Williams E. E. 1990; The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227 [CrossRef]
    [Google Scholar]
  9. Hirota K., Nodasaka Y., Orikasa Y., Okuyama H., Yumoto I. 2005; Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel ( Pneumatophorus japonicus ). Int J Syst Evol Microbiol 55:2355–2359 [CrossRef]
    [Google Scholar]
  10. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:22–26
    [Google Scholar]
  11. Ivanova E. P., Sawabe T., Gorshkova N. M., Svetashev V. I., Mikhailov V. V., Nicolau D. V., Christen R. 2001; Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033 [CrossRef]
    [Google Scholar]
  12. Ivanova E. P., Sawabe T., Hayashi K., Gorshkova N. M., Zhukova N. V., Nedashkovskaya O. I., Mikhailov V. V., Nicolau D. V., Christen R. 2003; Shewanella fidelis sp. nov., isolated from sediments and sea water. Int J Syst Evol Microbiol 53:577–582 [CrossRef]
    [Google Scholar]
  13. Ivanova E. P., Nedashkovskaya O. I., Sawabe T., Zhukova N. V., Frolova G. M., Nicolau D. V., Mikhailov V. V., Bowman J. P. 2004; Shewanella affinis sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 54:1089–1093 [CrossRef]
    [Google Scholar]
  14. Kato C., Nogi Y. 2001; Correlation between phylogenetic structure and function: examples from deep-sea Shewanella . FEMS Microbiol Ecol 35:223–230 [CrossRef]
    [Google Scholar]
  15. Kato C., Li L., Nogi Y., Nakamura Y., Tamaoka J., Horikoshi K. 1998; Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  17. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  18. Leonardo M. R., Moser D. P., Barbieri E., Branther C. A., MacGregor B. J., Paster B. J., Stackebrandt E., Nealson K. H. 1999; Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei . Int J Syst Bacteriol 49:1341–1351 [CrossRef]
    [Google Scholar]
  19. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  20. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. F., Widder E. A., Case J. F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039 [CrossRef]
    [Google Scholar]
  21. Margesin R., Nogi Y. 2004; Psychropiezophilic microorganisms. Cell Mol Biol 50:429–436
    [Google Scholar]
  22. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321 [CrossRef]
    [Google Scholar]
  23. Nogi Y., Kato C., Horikoshi K. 1998; Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338 [CrossRef]
    [Google Scholar]
  24. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:612–629
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Satomi M., Oikawa H., Yano Y. 2003; Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53:491–499 [CrossRef]
    [Google Scholar]
  27. Semple K. M., Westlake D. W. S. 1987; Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 35:925–931
    [Google Scholar]
  28. Simidu U., Kita-Tsukamoto K., Yamasato T., Yotsu M. 1990; Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40:331–336 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  31. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Venkateswaran K., Moser D. P., Dollhopf M. E. 10 other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyr B genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64173-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64173-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed