1887

Abstract

The sphingomonad group contains bacterial isolates that are quite diverse in terms of their phylogenetic, ecological and physiological properties. Thus, the genus was divided into four distinct genera, , , and on the basis of 16S rRNA gene sequence phylogenetic analysis, signature nucleotides, fatty acid profiles and polyamine patterns and this classification is currently widely accepted. In this study, a complete analysis of the 16S rRNA gene sequences of all the members of the group of sphingomonads encompassed in the genera , , and was inferred by using tree-making algorithms. [] DSM 6383 was found to form a distinct clade with the members of the genus , whereas [] DSM 15583 forms a clade with the members of the genus . The respective positions of these strains were also supported by the data for signature nucleotides, 2-hydroxy fatty acid profiles, polyamine patterns and the nitrate reduction properties of the strains. We therefore propose the reclassification of [] and [] as comb. nov. (type strain DSM 6383=CIP 107206) and comb. nov. (type strain DSM 15583=KCTC 2884=KCCM 41068), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64161-0
2006-03-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/3/667.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64161-0&mimeType=html&fmt=ahah

References

  1. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  2. Fujii K., Urano N., Ushio H., Satomi M., Kimura S. 2001; Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol 51:603–610
    [Google Scholar]
  3. Godoy F., Vancanneyt M., Martínez M., Steinbuchel A., Swings J., Rehm B. H. A. 2003; Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53:473–477 [CrossRef]
    [Google Scholar]
  4. Hiraishi A., Kuraishi H., Kawahara K. 2000; Emendation of the description of Blastomonas natatoria (Sly 1985) Sly and Cahill 1997 as an aerobic photosynthetic bacterium and reclassification of Erythromonas ursincola Yurkov et al . 1997 as Blastomonas ursincola comb. nov. Int J Syst Evol Microbiol 50:1113–1118 [CrossRef]
    [Google Scholar]
  5. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  6. Khan A. A., Wang R.-F., Cao W.-W., Franklin W., Cerniglia C. E. 1996; Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp. strain B1, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:466–469 [CrossRef]
    [Google Scholar]
  7. Kim S. J., Chun J., Bae K. S., Kim Y. C. 2000; Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomona s as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50:1641–1647 [CrossRef]
    [Google Scholar]
  8. Lee J. S., Kook S. Y., Yoon J. H., Takeuchi M., Pyun Y. R., Park Y. H. 2001; Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51, 1491–1498
    [Google Scholar]
  9. Nalin R., Simonet P., Vogel T. M., Normand P. 1999; Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23 [CrossRef]
    [Google Scholar]
  10. Pal R., Bala S., Dadhwal M. 8 other authors 2005; Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+ having similar lin genes represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [ Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972 [CrossRef]
    [Google Scholar]
  11. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  12. Stolz A., Schmidt-Maag C., Denner E. B., Busse H. J., Egli T., Kämpfer P. 2000; Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41 [CrossRef]
    [Google Scholar]
  13. Sutherland I. W. 1999; Microbial polysaccharide products. Biotechnol Genet Eng Rev 16:217–229 [CrossRef]
    [Google Scholar]
  14. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16:227–238 [CrossRef]
    [Google Scholar]
  15. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera Sphingobium Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  16. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  17. Ushiba Y., Takahara Y., Ohta H. 2003; Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048 [CrossRef]
    [Google Scholar]
  18. Vancanneyt M., Schut F., Snauwaert C., Goris J., Swings J., Gottschal J. C. 2001; Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51:73–79
    [Google Scholar]
  19. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  20. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I. 1999; Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb.nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al . 1997) comb. nov., and emendation of the genus Sphingomonas . Microbiol Immunol 43:339–349 [CrossRef]
    [Google Scholar]
  21. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al . 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  22. Yrjala K., Suomalainen S., Suhonen E. L., Kilpi S., Paulin K., Romantschuk M. 1998; Characterization and reclassification of an aromatic- and chloroaromatic-degrading Pseudomonas sp., strain HV3, as Sphingomonas sp. HV3.. Int J Syst Bacteriol 48:1057–1062 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64161-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64161-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error