1887

Abstract

A marine agarolytic bacterium, designated strain TMA1, was isolated from a seawater sample collected in a shallow-water region of An-Ping Harbour, Taiwan. It was non-fermentative and Gram-negative. Cells grown in broth cultures were straight or curved rods, non-motile and non-flagellated. The isolate required NaCl for growth and exhibited optimal growth at 25 °C and 3 % NaCl. It grew aerobically and was incapable of anaerobic growth by fermenting glucose or other carbohydrates. Predominant cellular fatty acids were C (17.5 %), C 8 (12.8 %), C (11.1 %), C iso 2-OH/C 7 (8.6 %) and C (7.3 %). The DNA G+C content was 41.0 mol%. Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus in the family . The name sp. nov. is proposed for the novel species, with TMA1 (=BCRC 17492=JCM 13379) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64130-0
2006-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1245.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64130-0&mimeType=html&fmt=ahah

References

  1. Agbo J. A. C., Moss M. O. 1979; The isolation and characterization of agarolytic bacteria from a low-land river. J Gen Microbiol 115:355–368 [CrossRef]
    [Google Scholar]
  2. Akagawa-Matsushita M., Matsuo M., Koga Y., Yamasato K. 1992; Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int J Syst Bacteriol 42:621–627 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 35:22–33
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  6. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas , Shewanella , and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761 [CrossRef]
    [Google Scholar]
  7. Holt J. G., Krieg N. R., Sneath P. H., Staley J. T., Williams S. T. (editors) 1994 Bergey's Manual of Determinative Bacteriology , 9th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Ivanova E. P., Flavier S., Christen R. 2004; Phylogenetic relationships among marine Alteromonas -like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam.nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788 [CrossRef]
    [Google Scholar]
  9. Jean W. D., Shieh W. Y., Chiu H.-H. 2006; Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae . Int J Syst Evol Microbiol 56:899–905 [CrossRef]
    [Google Scholar]
  10. Macián M. C., Ludwig W., Schleifer K. H., Garay E., Pujalte M. J. 2001a; Thalassomonas viridans gen. nov., sp. nov., a novel marine γ -proteobacterium. Int J Syst Evol Microbiol 51:1283–1289
    [Google Scholar]
  11. Macián M. C., Ludwig W., Schleifer K. H., Pujalte M. J., Garay E. 2001b; Vibrio agarivorans sp. nov., a novel agarolytic marine bacterium. Int J Syst Evol Microbiol 51:2031–2036 [CrossRef]
    [Google Scholar]
  12. Ohta Y., Hatada Y., Miyazaki M., Nogi Y., Ito S., Horikoshi K. 2005; Purification and characterization of a novel alpha-agarase from a Thalassomonas sp. Curr Microbiol 50:212–216 [CrossRef]
    [Google Scholar]
  13. Romanenko L. A., Zhukova N. V., Rhode M., Lysenko A. M., Mikhailov V. V., Stackebrandt E. 2003a; Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int J Syst Evol Microbiol 53:125–131 [CrossRef]
    [Google Scholar]
  14. Romanenko L. A., Zhukova N. V., Rhode M., Lysenko A. M., Mikhailov V. V., Stackebrandt E. 2003b; Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol 53:647–651 [CrossRef]
    [Google Scholar]
  15. Sasser M. 1997; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI;
    [Google Scholar]
  16. Shieh W. Y., Jean W. D. 1998; Alterococcus agarolyticus gen. nov., sp. nov. a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44:637–645 [CrossRef]
    [Google Scholar]
  17. Shieh W. Y., Liu C. M. 1996; Denitrification by a novel halophilic fermentative bacterium. Can J Microbiol 42:507–514 [CrossRef]
    [Google Scholar]
  18. Shieh W. Y., Simidu U., Maruyama Y. 1988; Nitrogen-fixation by marine agar-degrading bacteria. J Gen Microbiol 134:1821–1825
    [Google Scholar]
  19. Shieh W. Y., Chen A.-L., Chiu H.-H. 2000; Vibrio aerogenes sp. nov., a facultatively anaerobic, marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50:321–329 [CrossRef]
    [Google Scholar]
  20. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H. 2003a; Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53:479–484 [CrossRef]
    [Google Scholar]
  21. Shieh W. Y., Jean W. D., Lin Y.-T., Tseng M. 2003b; Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244–252 [CrossRef]
    [Google Scholar]
  22. Shieh W. Y., Lin Y.-T., Jean W. D. 2004; Pseudovibrio denitrificans gen. nov., sp. nov. a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54:2307–2312 [CrossRef]
    [Google Scholar]
  23. Skerratt J. H., Bowman J. P., Nichols P. D. 2002; Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106 [CrossRef]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Manual of Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Thompson F. L., Barash Y., Sawabe T., Sharon G., Swings J., Rosenberg E. 2006; Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 56:365–368 [CrossRef]
    [Google Scholar]
  26. van der Meulen H. J., Harder W., Veldkamp H. 1974; Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie van Leeuwenhoek 40:329–346 [CrossRef]
    [Google Scholar]
  27. von Hofsten B., Malmqvist M. 1975; Degradation of agar by a Gram-negative bacterium. J Gen Microbiol 87:150–158 [CrossRef]
    [Google Scholar]
  28. Yi H., Bae K. S., Chun J. 2004; Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54:377–380 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64130-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64130-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error