sp. nov. and sp. nov. Free

Abstract

The taxonomic positions of ‘’ DSM 1277 and ‘’ DSM 2457 were investigated in this study. 16S rRNA gene sequence analysis indicated that both strains belonged to the genus . DNA–DNA hybridization showed that they differed from DSM 101 and AS 1.1761. According to molecular and phenotypic characteristics, strain DSM 1277 (=AS 1.2807) is proposed as the type strain of sp. nov. At the same time, valid publication of the name sp. nov. is proposed, with the type strain DSM 2457 (=AS 1.2800=NCIMB 10516).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64118-0
2006-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1185.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64118-0&mimeType=html&fmt=ahah

References

  1. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  2. Döbereiner J., Marriel I. E., Nery M. 1976; Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473 [CrossRef]
    [Google Scholar]
  3. DSMZ 1998 Catalogue of Strains , 6th edn. Braunschweig: Deutsche Sammlung von Mikroorganismen und Zellkulturen;
    [Google Scholar]
  4. Felsenstein J. 1993 phylip – phylogeny inference package version 3.5. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  5. Hanson R. S., Phillips J. A. 1981; Chemical composition. In Manual of Methods for General Bacteriology pp  328–364 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994; Nonmotile (or rarely motile), Gram-negative curved bacteria. In Bergey's Manual of Determinative Bacteriology , 9th edn. pp  65–69 Edited by Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  7. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  8. Larkin J. M., Williams P. M., Taylor R. 1977; Taxonomy of the genus Microcyclus Ørskov 1928: reintroduction and emendation of the genus Spirosoma Migula 1894 and proposal of a new genus, Flectobacillus . Int J Syst Bacteriol 27:147–156 [CrossRef]
    [Google Scholar]
  9. Maclennan D. G., Ousby J. C., Owen T. R., Steer D. C. 1974; Microbiological production of protein . UK patent no: GB1370892
    [Google Scholar]
  10. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  11. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  12. Nikitin D. I. 1971; A new soil microorganism – Renobacter vacuolatum , gen. et sp. n. Dokl Akad Nauk SSSR 198:447–448 (in Russian
    [Google Scholar]
  13. Ørskov J. 1928; Beschreibung eines neuen Mikroben, Microcyclus aquaticus , mit eigentümlicher Morphologie. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig 107:180–184 (in German
    [Google Scholar]
  14. Raj H. D. 1976; A new species: Microcyclus marinus . Int J Syst Bacteriol 26:528–544 [CrossRef]
    [Google Scholar]
  15. Raj H. D. 1981; The genus Microcyclus and related bacteria. In The Prokaryotes. A Handbook on Habitats, Isolation and Identification of Bacteria pp  630–644 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. New York: Springer;
    [Google Scholar]
  16. Raj H. D. 1983; Proposal of Ancylobacter gen. nov. as a substitute for the bacterial genus Microcyclus Ørskov 1928. Int J Syst Bacteriol 33:397–398 [CrossRef]
    [Google Scholar]
  17. Raj H. D. 1989; Oligotrophic methylotrophs: Ancylobacter (basonym “ Microcyclus ” Ørskov) Raj gen. nov. Crit Rev Microbiol 17:89–106 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Schreier J. B. 1969; Modification of deoxyribonuclease test medium for rapid identification of Serratia marcescens . Am J Clin Pathol 51:711–716
    [Google Scholar]
  20. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp  409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Sydow H., Sydow P. 1904; Novae fungorum species. Ann Mycol 2:162–174
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  24. Xin Y. H., Zhou Y. G., Zhou H. L., Chen W. X. 2004; Ancylobacter rudongensis sp. nov., isolated from roots of Spartina anglica . Int J Syst Evol Microbiol 54:385–388 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64118-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64118-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed