1887

Abstract

Seven recently cultured bacterial isolates, although similar in their 16S rRNA gene sequences to L1-82 (DSM 14610), were not sufficiently related for inclusion within existing species, forming three separate clusters in a 16S rRNA gene phylogenetic tree. The isolates, which were obtained from human stools, were Gram-variable or Gram-negative, strictly anaerobic, slightly curved rods; cells from all strains measured approximately 0.5×1.5–5.0 μm and were motile. Two strains belonging to one cluster (A2-181 and A2-183) were the only strains that were able to grow on glycerol and that failed to grow on any of the complex substrates tested (inulin, xylan and amylopectin). Strains belonging to a second cluster (represented by M6/1 and M72/1) differed from the other isolates in their ability to grow on sorbitol. Isolates belonging to a third cluster (L1-83 and A2-194) were the only strains that failed to grow on xylose and that gave good growth on inulin (strains M6/1 and M72/1 gave weak growth). All strains were net acetate utilizers. The DNA G+C contents of representative strains A2-183, A2-194, M72/1 and L1-82 were 47.4, 41.4, 42.0 and 42.6 mol%, respectively. Based on 16S rRNA gene sequence similarity, three novel species are proposed, with the names sp. nov. (type strain A2-183=DSM 16839=NCIMB 14029), sp. nov. (type strain A2-194=DSM 16841=NCIMB 14030) and sp. nov. (type strain M72/1=DSM 16840=NCIMB 14031).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64098-0
2006-10-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2437.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64098-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. M., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1994; ). Current Protocols in Molecular Biology, vol. 1, section 2.4. New York: Wiley.
  2. Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S., Henderson, C. & Flint, H. J. ( 2000; ). Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66, 1654–1661.[CrossRef]
    [Google Scholar]
  3. Duncan, S. H., Hold, G. L., Barcenilla, A., Stewart, C. S. & Flint, H. J. ( 2002a; ). Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52, 1615–1620.[CrossRef]
    [Google Scholar]
  4. Duncan, S. H., Hold, G. L., Harmsen, H. J. M., Stewart, C. S. & Flint, H. J. ( 2002b; ). Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 2141–2146.[CrossRef]
    [Google Scholar]
  5. Duncan, S. H., Scott, K. P., Ramsay, A. G., Harmsen, H. J. M., Welling, G. W., Stewart, C. S. & Flint, H. J. ( 2003; ). Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol 69, 1136–1142.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1989; ). phylip – Phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  7. Felsenstein, J. & Churchill, G. A. ( 1996; ). A hidden Markov model approach to variation among sites in rate of evolution. Mol Biol Evol 13, 93–104.[CrossRef]
    [Google Scholar]
  8. Hold, G. L., Schwiertz, A., Aminov, R. I., Blaut, M. & Flint, H. J. ( 2003; ). Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 69, 4320–4324.[CrossRef]
    [Google Scholar]
  9. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg: Virginia Polytechnic Institute and State University.
  10. Louis, P., Duncan, S. H., McCrae, S. I., Millar, J., Jackson, M. S. & Flint, H. J. ( 2004; ). Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186, 2099–2106.[CrossRef]
    [Google Scholar]
  11. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  12. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  13. Miyazaki, K., Martin, J. C., Marinsek-Logar, R. & Flint, H. J. ( 1997; ). Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B14. Anaerobe 3, 373–381.[CrossRef]
    [Google Scholar]
  14. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  15. Stanton, T. B. & Savage, D. C. ( 1983; ). Colonization of gnotobiotic mice by Roseburia cecicola, a motile, obligately anaerobic bacterium from murine ceca. Appl Environ Microbiol 45, 1677–1684.
    [Google Scholar]
  16. Swofford, D. L. ( 2002; ). paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland: Sinauer Associates.
  17. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  18. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  19. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  20. Wood, J., Scott, K. P., Avgustin, G., Newbold, C. J. & Flint, H. J. ( 1998; ). Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences. Appl Environ Microbiol 64, 3683–3689.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64098-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64098-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error