gen. nov., sp. nov., a new member of the family ‘’, phylum Free

Abstract

An aquatic bacterium, strain GPTSA100-15, was isolated on nutritionally poor medium TSBA100 (tryptic soy broth diluted 100 times and solidified with 1.5 % agarose) and characterized using a polyphasic approach. The isolate was unable to grow on commonly used nutritionally rich media such as tryptic soy agar, nutrient agar and Luria–Bertani agar. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was affiliated with the family ‘’ in the phylum . Phylogenetically, it showed closest similarity (94.0 %) with an uncultured bacterial clone, HP1A92, detected in a sludge microbial community. Among the culturable bacteria, the isolate had highest 16S rRNA gene sequence similarity with 4M15 (87.8 %). Sequence similarities with other members of the phylum were less than 85 %. The fatty acid profile of the isolate grown on TSBA100 indicated that the major fatty acid was iso-C, which is also present in many members of the family ‘’. Cells of strain GPTSA100-15 are Gram-negative, strictly aerobic rods. The DNA G+C content of the isolate is 36.9 mol%. Results of phenotypic, chemotaxonomic and phylogenetic analyses clearly indicate that strain GPTSA100-15 represents a new genus within the family ‘’; the name gen. nov. is proposed for the genus, with sp. nov. as the type species. The type strain of is GPTSA100-15 (=MTCC 6937=DSM 17448).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64086-0
2006-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/5/991.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64086-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  2. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  3. Brettar I., Christen R., Höfle M. G. 2004; Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga–Flavobacterium–Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 54:2335–2341 [CrossRef]
    [Google Scholar]
  4. Chaturvedi P., Reddy G. S. N., Shivaji S. 2005; Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55:2113–2117 [CrossRef]
    [Google Scholar]
  5. Chelius M. K., Triplett E. W. 2000; Dyadobacter fermentans gen. nov., sp. nov., a novel Gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 50:751–758 [CrossRef]
    [Google Scholar]
  6. Chelius M. K., Henn J. A., Triplett E. W. 2002; Runella zeae sp. nov., a novel Gram-negative bacterium from the stems of surface-sterilized Zea mays . Int J Syst Evol Microbiol 52:2061–2063 [CrossRef]
    [Google Scholar]
  7. Cottrell M. T., Kirchman D. L. 2000; Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697 [CrossRef]
    [Google Scholar]
  8. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  119–166 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  11. Glöckner F. O., Fuchs B. M., Amann R. 1999; Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726
    [Google Scholar]
  12. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  656–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Kirchman D. L. 2002; The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100
    [Google Scholar]
  15. Larkin J. M., Borral R. 1984; Genus II. Runella Larkin & Williams 1978, 35AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  128–129 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  16. Ludwig W., Klenk H.-P. 2001; Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  49–66 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  17. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  18. McMahon K. D., Dojka M. A., Pace N. R., Jenkins D., Keasling J. D. 2002; Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl Environ Microbiol 68:4971–4978 [CrossRef]
    [Google Scholar]
  19. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp  21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003; Reichenbachia agariperforans gen. nov., sp. nov. a novel marine bacterium in the phylum Cytophaga–Flavobacterium–Bacteroides . Int J Syst Evol Microbiol 53:81–85 [CrossRef]
    [Google Scholar]
  21. Pandey K. K., Mayilraj S., Chakrabarti T. 2002; Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52:1559–1567 [CrossRef]
    [Google Scholar]
  22. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  23. Reddy G. S. N., Garcia-Pichel F. 2005; Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 55:1295–1299 [CrossRef]
    [Google Scholar]
  24. Reichenbach H. 1989; Genus I. Cytophaga Winogradsky 1929, 577AL emend. In Bergey's Manual of Systematic Bacteriology vol. 3 pp  2015–2050 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Saha P., Krishnamurthi S., Mayilraj S., Prasad G. S., Bora T. C., Chakrabarti T. 2005; Aquimonas voraii gen. nov., sp. nov. a novel gammaproteobacterium isolated from a warm spring of Assam, India. Int J Syst Evol Microbiol 55:1491–1495 [CrossRef]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230
    [Google Scholar]
  30. Weon H.-Y., Kim B.-Y., Kwon S.-W., Park I. C., Cha I. B., Tindall B. J., Stackebrandt E., Trüper H.-G., Go S. J. 2005; Leadbetterella byssophila gen. nov., sp. nov., isolated from cotton-waste composts for the cultivation of oyster mushroom. Int J Syst Evol Microbiol 55:2297–2302 [CrossRef]
    [Google Scholar]
  31. Yoon J.-H., Kang S.-J., Lee C.-H., Oh T.-K. 2005; Marinicola seohaensis gen. nov., sp. nov. isolated from sea water of the Yellow Sea, Korea. Int J Syst Evol Microbiol 55:859–863 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64086-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64086-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed