1887

Abstract

The evolutionary history and relationship between plastids of dinoflagellate algae and apicomplexan parasites have been controversial both because the organelles are unusual and because their genomes contain few comparable genes. However, most plastid proteins are encoded in the host nucleus and targeted to the organelle, and several of these genes have proved to have interesting and informative evolutionary histories. We have used expressed sequence tag (EST) sequencing to generate gene sequence data from the nuclear genome of the dinoflagellate and inferred phylogenies for the complete set of identified plastid-targeted proteins. Overall, dinoflagellate plastid proteins are most consistently related to homologues from the red algal plastid lineage (not green) and, in many of the most robust cases, they branch with other chromalveolate algae. In resolved phylogenies where apicomplexan data are available, dinoflagellates and apicomplexans are related. We also identified two cases of apparent lateral, or horizontal, gene transfer, one from the green plastid lineage and one from a bacterial lineage unrelated to plastids or cyanobacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64061-0
2006-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1439.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64061-0&mimeType=html&fmt=ahah

References

  1. Archibald, J. M. & Keeling, P. J. ( 2002; ). Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18, 577–584.[CrossRef]
    [Google Scholar]
  2. Archibald, J. M., Rogers, M. B., Toop, M., Ishida, K. & Keeling, P. J. ( 2003; ). Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A 100, 7678–7683.[CrossRef]
    [Google Scholar]
  3. Armbrust, E. V., Berges, J. A., Bowler, C. & 42 other authors ( 2004; ). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86.[CrossRef]
    [Google Scholar]
  4. Bachvaroff, T. R., Concepcion, G. T., Rogers, C. R., Herman, E. M. & Delwiche, C. F. ( 2004; ). Dinoflagellate expressed sequence tags data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 155, 65–78.[CrossRef]
    [Google Scholar]
  5. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. ( 2000; ). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977.[CrossRef]
    [Google Scholar]
  6. Barbier, G., Oesterhelt, C., Larson, M. D., Halgren, R. G., Wilkerson, C., Garavito, R. M., Benning, C. & Weber, A. P. ( 2005; ). Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137, 460–474.[CrossRef]
    [Google Scholar]
  7. Blanchard, J. L. & Hicks, J. S. ( 1999; ). The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage. J Eukaryot Microbiol 46, 367–375.[CrossRef]
    [Google Scholar]
  8. Bruno, W. J., Socci, N. D. & Halpern, A. L. ( 2000; ). Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17, 189–197.[CrossRef]
    [Google Scholar]
  9. Cai, X., Fuller, A. L., McDougald, L. R. & Zhu, G. ( 2003; ). Apicoplast genome of the coccidian Eimeria tenella. Gene 321, 39–46.[CrossRef]
    [Google Scholar]
  10. Cavalier-Smith, T. ( 1998; ). A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73, 203–266.[CrossRef]
    [Google Scholar]
  11. Delwiche, C. F. ( 1999; ). Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154 (Suppl. 4), S164–S177.[CrossRef]
    [Google Scholar]
  12. Fast, N. M., Kissinger, J. C., Roos, D. S. & Keeling, P. J. ( 2001; ). Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18, 418–426.[CrossRef]
    [Google Scholar]
  13. Fast, N. M., Xue, L., Bingham, S. & Keeling, P. J. ( 2002; ). Re-examining alveolate evolution using multiple protein molecular phylogenies. J Eukaryot Microbiol 49, 30–37.[CrossRef]
    [Google Scholar]
  14. Funes, S., Davidson, E., Reyes-Prieto, A., Magallón, S., Herion, P., King, M. P. & Gonzalez-Halphen, D. ( 2002; ). A green algal apicoplast ancestor. Science 298, 2155.[CrossRef]
    [Google Scholar]
  15. Gajadhar, A. A., Marquardt, W. C., Hall, R., Gunderson, J., Ariztia-Carmona, E. V. & Sogin, M. L. ( 1991; ). Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol 45, 147–154.[CrossRef]
    [Google Scholar]
  16. Goggin, C. L. & Barker, S. C. ( 1993; ). Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA. Mol Biochem Parasitol 60, 65–70.[CrossRef]
    [Google Scholar]
  17. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  18. Hackett, J. D., Maranda, L., Yoon, H. S. & Bhattacharya, D. ( 2003; ). Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39, 440–448.[CrossRef]
    [Google Scholar]
  19. Hackett, J. D., Yoon, H. S., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., Nosenko, T. & Bhattacharya, D. ( 2004a; ). Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 14, 213–218.[CrossRef]
    [Google Scholar]
  20. Hackett, J. D., Anderson, D. M., Erdner, D. L. & Bhattacharya, D. ( 2004b; ). Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91, 1523–1534.[CrossRef]
    [Google Scholar]
  21. Harper, J. T. & Keeling, P. J. ( 2003; ). Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20, 1730–1735.[CrossRef]
    [Google Scholar]
  22. Harper, J. T., Waanders, E. & Keeling, P. J. ( 2005; ). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55, 487–496.[CrossRef]
    [Google Scholar]
  23. Hiller, R. G., Wrench, P. M. & Sharples, F. P. ( 1995; ). The light-harvesting chlorophyll a-c-binding protein of dinoflagellates: a putative polyprotein. FEBS Lett 363, 175–178.[CrossRef]
    [Google Scholar]
  24. Ishida, K. & Green, B. R. ( 2002; ). Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci U S A 99, 9294–9299.[CrossRef]
    [Google Scholar]
  25. Jomaa, H., Wiesner, J., Sanderbrand, S. & 9 other authors ( 1999; ). Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573–1576.[CrossRef]
    [Google Scholar]
  26. Keeling, P. J. ( 2004; ). Diversity and evolutionary history of plastids and their hosts. Am J Bot 91, 1481–1493.[CrossRef]
    [Google Scholar]
  27. Köhler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P., Wilson, R. J. M., Palmer, J. D. & Roos, D. S. ( 1997; ). A plastid of probable green algal origin in apicomplexan parasites. Science 275, 1485–1489.[CrossRef]
    [Google Scholar]
  28. Kuvardina, O. N., Leander, B. S., Aleshin, V. V., Myl'nikov, A. P., Keeling, P. J. & Simdyanov, T. G. ( 2002; ). The phylogeny of colpodellids (Alveolata) using small subunit rRNA gene sequences suggests they are the free-living sister group to apicomplexans. J Eukaryot Microbiol 49, 498–504.[CrossRef]
    [Google Scholar]
  29. Leander, B. S. & Keeling, P. J. ( 2003; ). Morphostasis in alveolate evolution. Trends Ecol Evol 18, 395–402.[CrossRef]
    [Google Scholar]
  30. Liu, L., Wilson, T. & Hastings, J. W. ( 2004; ). Molecular evolution of dinoflagellate luciferases, enzymes with three catalytic domains in a single polypeptide. Proc Natl Acad Sci U S A 101, 16555–16560.[CrossRef]
    [Google Scholar]
  31. Matsuzaki, M., Misumi, O., Shin-i, T. & 38 other authors ( 2004; ). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653–657.[CrossRef]
    [Google Scholar]
  32. McFadden, G. I. ( 2001; ). Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37, 951–959.[CrossRef]
    [Google Scholar]
  33. McFadden, G. I. & Waller, R. F. ( 1997; ). Plastids in parasites of humans. Bioessays 19, 1033–1040.[CrossRef]
    [Google Scholar]
  34. Nassoury, N., Cappadocia, M. & Morse, D. ( 2003; ). Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116, 2867–2874.[CrossRef]
    [Google Scholar]
  35. Patron, N. J., Rogers, M. B. & Keeling, P. J. ( 2004; ). Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell 3, 1169–1175.[CrossRef]
    [Google Scholar]
  36. Patron, N. J., Waller, R. F., Archibald, J. M. & Keeling, P. J. ( 2005; ). Complex protein targeting to dinoflagellate plastids. J Mol Biol 348, 1015–1024.[CrossRef]
    [Google Scholar]
  37. Patron, N. J., Waller, R. F. & Keeling, P. J. ( 2006; ). A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357, 1373–1382.[CrossRef]
    [Google Scholar]
  38. Ralph, S. A., van Dooren, G. G., Waller, R. F., Crawford, M. J., Fraunholz, M. J., Foth, B. J., Tonkin, C. J., Roos, D. S. & McFadden, G. I. ( 2004; ). Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2, 203–216.[CrossRef]
    [Google Scholar]
  39. Rowan, R., Whitney, S. M., Fowler, A. & Yellowlees, D. ( 1996; ). Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8, 539–553.[CrossRef]
    [Google Scholar]
  40. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef]
    [Google Scholar]
  41. Takishita, K., Patron, N. J., Ishida, K., Maruyama, T. & Keeling, P. J. ( 2005; ). A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates. J Eukaryot Microbiol 52, 343–348.[CrossRef]
    [Google Scholar]
  42. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  43. Waller, R. F., Keeling, P. J., Donald, R. G. & 7 other authors ( 1998; ). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95, 12352–12357.[CrossRef]
    [Google Scholar]
  44. Waller, R. F., Keeling, P. J., van Dooren, G. G. & McFadden, G. I. ( 2003; ). Comment on “A green algal apicoplast ancestor”. Science 301, 49.
    [Google Scholar]
  45. Whitney, S. M., Shaw, D. C. & Yellowlees, D. ( 1995; ). Evidence that some dinoflagellates contain a ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. Proc Biol Sci 259, 271–275.[CrossRef]
    [Google Scholar]
  46. Wilson, I. R. J. M., Denny, P. W., Preiser, P. R. & 8 other authors ( 1996; ). Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261, 155–172.[CrossRef]
    [Google Scholar]
  47. Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. ( 2002; ). The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99, 15507–15512.[CrossRef]
    [Google Scholar]
  48. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya, D. ( 2004; ). A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21, 809–818.[CrossRef]
    [Google Scholar]
  49. Yoon, H. S., Hackett, J. D., Van Dolah, F. M., Nosenko, T., Lidie, K. L. & Bhattacharya, D. ( 2005; ). Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol Biol Evol 22, 1299–1308.[CrossRef]
    [Google Scholar]
  50. Zhang, Z., Green, B. R. & Cavalier-Smith, T. ( 1999; ). Single gene circles in dinoflagellate chloroplast genomes. Nature 400, 155–159.[CrossRef]
    [Google Scholar]
  51. Zhang, Z., Green, B. R. & Cavalier-Smith, T. ( 2000; ). Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51, 26–40.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64061-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64061-0
Loading

Data & Media loading...

vol. , part 6, pp. 1439 - 1447

Protein maximum-likelihood phylogenies (inferred using PhyML as described in Methods) for plastid-targeted proteins from . [PDF](407 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error