sp. nov., a nitrogen-fixing bacterium isolated from the roots of Free

Abstract

Three yellow-pigmented strains associated with rice plants were characterized by using a polyphasic approach. The nitrogen-fixing abilities of these strains were confirmed by acetylene reduction assay and gene detection. The three strains were found to be very closely related, with 99·9 % 16S rRNA gene sequence similarity and greater than 70 % DNA–DNA hybridization values, suggesting that the three strains represent a single species. 16S rRNA gene sequence analysis indicated that the strains were closely related to , with 99·5 % similarity. The chemotaxonomic characteristics (G+C content of the DNA of 68·0 mol%, ubiquinone Q-10 system, 2-OH as the only hydroxy fatty acid and homospermidine as the sole polyamine) were similar to those of members of the genus . Based on DNA–DNA hybridization values and physiological characteristics, the three novel strains could be differentiated from other recognized species of the genus . The name sp. nov. is proposed to accommodate these bacterial strains; the type strain is Y39 (=NBRC 15497=IAM 15283=CCTCC AB205007).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64056-0
2006-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/4/889.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64056-0&mimeType=html&fmt=ahah

References

  1. Anderson G. R. 1955; Nitrogen fixation by Pseudomonas -like soil bacteria. J Bacteriol 70:129–133
    [Google Scholar]
  2. Cantera J. J. L., Kawasaki H., Seki T. 2004; The nitrogen-fixing gene ( nifH ) of Rhodopseudomonas palustris : a case of lateral gene transfer?. Microbiology 150:2237–2246 [CrossRef]
    [Google Scholar]
  3. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W.-R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  7. Hill S., Postgate J. R. 1969; Failure of putative nitrogen-fixing bacteria to fix nitrogen. J Gen Microbiol 58:277–285 [CrossRef]
    [Google Scholar]
  8. Jordan D. C. 1984; Family III. Rhizobiaceae Conn 1938, 321AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  234–256 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of “ Pseudomonas azotocolligans ” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583 [CrossRef]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  11. Lovell C. R., Friez M. J., Longshore J. W., Bagwell C. E. 2001; Recovery and phylogenetic analysis of nifH sequences from diazotrophic bacteria associated with dead aboveground biomass of Spartina alterniflora . Appl Environ Microbiol 67:5308–5314 [CrossRef]
    [Google Scholar]
  12. Moulin L., Munive A., Dreyfus B., Boivin-Masson C. 2001; Nodulation of legumes by members of the β -subclass of Proteobacteria . Nature 411:948–950 [CrossRef]
    [Google Scholar]
  13. Oyaizu-Masuchi Y., Komagata K. 1988; Isolation of free-living nitrogen-fixing bacteria from the rhizosphere of rice. J Gen Appl Microbiol 34:127–164 [CrossRef]
    [Google Scholar]
  14. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef]
    [Google Scholar]
  15. Raymond J., Siefert J. L., Staples C. R., Blankenship R. E. 2004; The natural history of nitrogen fixation. Mol Biol Evol 21:541–554
    [Google Scholar]
  16. Rosado A. S., Duarte G. F., Seldin L., Van Elsas J. D. 1998; Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Swofford D. L. 1998 paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  19. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  21. Ueda T., Suga Y., Yahiro N., Matsuguchi T. 1995; Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417
    [Google Scholar]
  22. Xie C.-H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  23. Xie C.-H., Yokota A. 2004; Phylogenetic analyses of the nitrogen-fixing genus Derxia . J Gen Appl Microbiol 50:129–135 [CrossRef]
    [Google Scholar]
  24. Xie C.-H., Yokota A. 2005a; Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa . Int J Syst Evol Microbiol 55:1233–1237 [CrossRef]
    [Google Scholar]
  25. Xie C.-H., Yokota A. 2005b; Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa . Int J Syst Evol Microbiol 55:1435–1438 [CrossRef]
    [Google Scholar]
  26. Xiong J., Fischer W. M., Inoue K., Nakahara M., Bauer C. E. 2000; Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730 [CrossRef]
    [Google Scholar]
  27. Young J. P. W. 1992; Phylogenetic classification of nitrogen-fixing organisms. In Biological Nitrogen Fixation pp  43–86 Edited by Stacey G., Burris R. H., Evans H. J. New York: Chapman & Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64056-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64056-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed