1887

Abstract

A rod-shaped bacterium, designated CL-TF13, was isolated from a tidal flat in Ganghwa, Korea. Analysis of the 16S rRNA gene sequence revealed an affiliation with the genus . The sequence similarities between CL-TF13 and type strains of members of the genus were from 94·2 to 97·4 %. Cells were motile by means of gliding. Strain CL-TF13 grew on solid medium as pale-yellow colonies with an irregular spreading edge. The strain was able to grow in NaCl at a range of 3–5 %. They grew within a temperature range of 5–40 °C and at pH range of 6–10. The major fatty acids were summed feature 3 (C 7 and/or iso-C 2-OH, 19·6 %), iso-C (18·8 %) and iso-C 3-OH (13·6 %). Fatty acids such as C 6 (6,9,12) (1·5 %) and summed feature 4 (iso I- and/or anteiso B-C, 1·3 %) were uniquely found in minor quantities in CL-TF13 among species. The DNA G+C content was 30 mol%. According to physiological data, fatty-acid composition and 16S rRNA gene sequence, CL-TF13 could be assigned to the genus but distinguished from the recognized species of the genus. Therefore, strain CL-TF13 (=KCCM 42115=JCM 13039) represents a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64044-0
2006-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/3/635.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64044-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Cole, J. R., Chai, B., Marsh, T. L. & 8 other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  3. Collins, M. D. ( 1985; ). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  4. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  5. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  6. Frette, L., Jørgensen, N. O. G., Irming, H. & Kroer, N. ( 2004; ). Tenacibaculum skagerrakense sp. nov., a marine bacterium isolated from the pelagic zone in Skagerrak, Denmark. Int J Syst Evol Microbiol 54, 519–524.[CrossRef]
    [Google Scholar]
  7. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  8. Hansen, G. H., Bergh, Ø., Michaelsen, J. & Knappskog, D. ( 1992; ). Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int J Syst Bacteriol 42, 451–458.[CrossRef]
    [Google Scholar]
  9. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  10. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  11. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  12. Lyman, J. & Fleming, R. H. ( 1940; ). Composition of sea water. J Mar Res 3, 134–146.
    [Google Scholar]
  13. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  14. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, K. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  15. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  16. Reichenbach, H. ( 1992; ). The order Cytophagales. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, pp. 3631–3675. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  19. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  20. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef]
    [Google Scholar]
  21. Swofford, D. L. ( 1998; ). paup* – Phylogenetic Analysis Using Parsimony, version 4. Sunderland, MA: Sinauer Associates.
  22. Wakabayashi, H., Hikida, M. & Masumura, K. ( 1986; ). Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int J Syst Bacteriol 36, 396–398.[CrossRef]
    [Google Scholar]
  23. Yoon, J.-H., Kang, S.-J. & Oh, T.-K. ( 2005; ). Tenacibaculum lutimaris sp. nov., isolated from a tidal flat in the Yellow Sea, Korea. Int J Syst Evol Microbiol 55, 793–798.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64044-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64044-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error