1887

Abstract

An obligatorily anaerobic, thermotolerant, asporogenic bacterium, strain JW/YJL-S1, was isolated from a sediment sample of a constructed wetland system receiving acid sulfate water (pH 1.6–3.0). Cells of strain JW/YJL-S1 were straight to curved rods 0.2–0.4 μm in diameter and 2.0–7.0 μm in length, and stained Gram-negative. Growth of strain JW/YJL-S1 was observed at 25–54 °C (no growth at or below 20 or at or above 58 °C), with an optimum temperature range for growth of 42.5–46.5 °C. The pH range for growth was 6.0–8.25 (no growth at or below pH 5.7 or at or above pH 8.5), with optimum growth at pH 6.8–7.75. The salinity range for growth was 0–1.5 % (w/v) NaCl, with an optimum at 0–0.5 %. During growth on glucose the isolate produced acetate, lactate and ethanol as main fermentation end products. The fatty acid composition was dominated by branched-chain compounds: i15 : 0, a15 : 0, i16 : 0 and i17 : 0. The G+C content of the genomic DNA was 42.8 mol% (HPLC). Strain JW/YJL-S1 showed polymorphism of the 16S rRNA gene. Its closest relative was the thermophilic DSM 5807 (a member of cluster III) (a search revealed DSM 10365 to have 92.7 % gene sequence similarity, the highest value). The inferred phylogenetic trees placed strain JW/YJL-S1 between clusters I/II and III. Based on the morphological and phylogenetic data presented, JW/YJL-S1 (=DSM 17427=ATCC BAA-1219) is proposed as the type strain of a novel species in a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64040-0
2006-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/9/2089.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64040-0&mimeType=html&fmt=ahah

References

  1. Cappuccino J. G., Sherman N. 1987 Microbiology: A Laboratory Manual , 2nd edn. Menlo Park, CA: Benjamin & Cummins Publishing Co., Inc;
    [Google Scholar]
  2. Chin K.-J., Hahn D., Hengstmann U., Liesack W., Janssen P. H. 1999; Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl Environ Microbiol 65:5042–5049
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  4. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–23 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Erkel C., Kemnitz D., Kube M., Ricke P., Chin K.-J., Dedysh S., Reinhardt R., Conrad R., Liesack W. 2005; Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques. FEMS Microbiol Ecol 53:187–204 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 2001 phylip – Phylogeny Inference Package, version 3.6a2.1. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  7. Garrity G. M., Bell J. A., Lilburn T. G. 2004; Taxonomic outline of the prokaryotes. In Bergey's Manual of Systematic Bacteriology , 2nd edn, release 5.0. New York: Springer; http://dx.doi.org/10.1007/bergeysoutline
    [Google Scholar]
  8. Grabowski A., Nercessian O., Fayolle F., Blanchet D., Jeanthon C. 2005; Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443 [CrossRef]
    [Google Scholar]
  9. Guckert J. B., Antworth C. P., Nichols P. D., White D. C. 1985; Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol (FEMS Microbiol Lett Special Issue) 31:147–158 [CrossRef]
    [Google Scholar]
  10. Hengstmann U., Chin K.-J., Janssen P. H., Liesack W. 1999; Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 65:5050–5058
    [Google Scholar]
  11. Johnson D. B. 1998; Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  14. Lee Y. J. 2005; Microbial diversity in a constructed wetland system for treatment of acid sulfate water . PhD thesis University of Georgia; Athens, GA, USA:
  15. Lee Y. J., Wagner I. D., Brice M. E., Kevbrin V. V., Mills G. L., Romanek C. S., Wiegel J. 2005 Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9, 375–383 [CrossRef]
  16. Ljungdahl L. G., Wiegel J. 1986; Anaerobic fermentations. In Manual of Industrial Microbiology and Biotechnology pp  84–96 Edited by Demain A. L., Solomon N. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  18. O'Leary W. M., Wilkinson S. G. 1988; Gram-positive bacteria. In Microbial Lipids vol. 1 pp  117–201 Edited by Ratledge C., Wilkinson S. G. New York: Academic Press;
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Shigematsu T., Tang Y., Kawaguchi H., Ninomiya K., Kijima J., Kobayashi T., Morimura S., Kida K. 2003; Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547–558 [CrossRef]
    [Google Scholar]
  21. Thomas R. C. 2003; Passive treatment of low pH, ferric iron-dominated acid rock drainage . PhD thesis University of Georgia; Athens, GA, USA:
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. vol 4 pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  24. Wiegel J. 1981; Distinction between the Gram reaction and the Gram type of bacteria. Int J Syst Bacteriol 31:88 [CrossRef]
    [Google Scholar]
  25. Wiegel J. 1998; Anaerobic alkali-thermophiles, a novel group of extremophiles. Extremophiles 2:257–267 [CrossRef]
    [Google Scholar]
  26. Wiegel J., Tanner R., Rainey F. A. 2005; An introduction to the family Clostridiaceae. In The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community release 3–20 New York: Springer; http://141.150.157.117:8080/prokPUB/metadata/releases/3.20.htm#
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64040-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64040-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error