1887

Abstract

Three strains of non-motile, Gram-positive, filamentous actinomycetes, isolates J4, J5 and J59, initially recognized microscopically in activated sludge foam by their distinctive branching patterns, were isolated by micromanipulation. The taxonomic positions of the isolates were determined using a polyphasic approach. Almost-complete 16S rRNA gene sequences of the isolates were aligned with corresponding sequences of representatives of the suborder and phylogenetic trees were inferred using three tree-making algorithms. The organisms formed a distinct phyletic line in the 16S rRNA gene tree. The three isolates showed 16S rRNA gene sequence similarities within the range 96.9–97.2 % with their nearest phylogenetic neighbours, namely DSM 43247 and DSM 43249. Strain J4 was shown to have a chemotaxonomic profile typical of the genus and was readily distinguished from representatives of the genus on the basis of Curie-point pyrolysis mass spectrometric data. The isolates shared nearly identical phenotypic profiles that distinguished them from representatives of the most closely related species. It is evident from the genotypic and phenotypic data that the three isolates belong to a novel species. The name proposed for this taxon is sp. nov.; the type strain is J4 (=DSM 44981=NCIMB 14149).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64034-0
2006-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2265.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64034-0&mimeType=html&fmt=ahah

References

  1. Blackall L. L., Parlett J. H., Hayward A. C., Minnikin D. E., Greenfield D. E., Harbers A. E. 1989; Nocardia pinensis sp. nov., an actinomycete found in activated sludge foams in Australia. J Gen Microbiol 135:1547–1558
    [Google Scholar]
  2. Chun J., Blackall L. L., Kang S.-O., Hah Y.-C., Goodfellow M. 1997; A proposal to reclassify Nocardia pinensis Blackall et al . as Skermania piniformis gen. nov., comb. nov. Int J Syst Bacteriol 47:127–131 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1989; phylip – Phylogeny Inference Package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  6. Fitch W. M. 1971; Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Goodfellow M., Maldonado L. A. 2006; The families Dietziaceae , Gordoniaceae , Nocardiaceae and Tsukamurellaceae . In The Prokaryotes 3rd edn., vol 3 Archaea and Bacteria: Firmicutes, Actinomycetes Edited by Dworkin F., Falkow S., Schleifer K. H., Stackebrandt E. New York, Berlin & Heidelberg: Springer; (in press
    [Google Scholar]
  8. Goodfellow M., Davenport R., Stainsby F. M., Curtis T. P. 1996; Actinomycete diversity associated with foaming in activated sludge plants. J Ind Microbiol Biotechnol 17:268–280 [CrossRef]
    [Google Scholar]
  9. Goodfellow M., Freeman R., Sisson P. R. 1997; Curie-point pyrolysis mass spectrometry as a tool in clinical microbiology. Zentralbl Bakteriol 285:133–156 [CrossRef]
    [Google Scholar]
  10. Goodfellow M., Stainsby F. M., Davenport R., Chun J., Curtis T. P. 1998; Activated sludge foaming: the true extent of actinomycete diversity. Water Sci Technol 37 (4–5):511–519 [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol  3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Klatte S., Rainey F. A., Kroppenstedt R. M. 1994; Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1994 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int J Syst Bacteriol 44:769–773 [CrossRef]
    [Google Scholar]
  13. Kummer C., Schumann P., Stackebrandt E. 1999; Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Bacteriol 49:1513–1522 [CrossRef]
    [Google Scholar]
  14. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:434–443
    [Google Scholar]
  15. Lechevalier M. P., Lechevalier H. A. 1974; Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol 24:278–288 [CrossRef]
    [Google Scholar]
  16. Lechevalier M. P., De Bièvre C., Lechevalier H. A. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [CrossRef]
    [Google Scholar]
  17. Maldonado L. A., Stainsby F. M., Ward A. C., Goodfellow M. 2003; Gordonia sinesedis sp. nov., a novel soil isolate. Antonie van Leeuwenhoek 83:75–78 [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M. 1980; Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  21. Nam S.-W., Chun J., Kim S., Kim W., Zakrzewska-Czerwinska J., Goodfellow M. 2003; Tsukamurella spumae sp. nov., a novel actinomycete associated with foaming in activated sludge plants. Syst Appl Microbiol 26:367–375 [CrossRef]
    [Google Scholar]
  22. Nam S.-W., Kim W., Chun J., Goodfellow M. 2004; Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 54:1209–1212 [CrossRef]
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Schaal K. P. 1985; Identification of clinically significant actinomycetes and related bacteria using chemical techniques. In Chemical Methods in Bacterial Systematics pp  359–381 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  26. Seviour R. J., Blackall L. L. (editors) 1999 Microbiology of Activated Sludge Dordrecht: Kluwer;
    [Google Scholar]
  27. Soddell J. A. 1999; Foaming. In Microbiology of Activated Sludge pp  161–202 Edited by Seviour R. J., Blackall L. L. Dordrecht: Kluwer;
    [Google Scholar]
  28. Soddell J. A., Seviour R. J. 1998; Numerical taxonomy of Skermania piniformis and related isolates from activated sludge. J Appl Microbiol 84:272–284 [CrossRef]
    [Google Scholar]
  29. Soddell J. A., Stainsby F. M., Eales K. L., Kroppenstedt R. M., Seviour R. J., Goodfellow M. 2006; Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56739–744 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  31. Stainsby F. M., Soddell J., Seviour R., Upton J., Goodfellow M. 2002; Dispelling the “ Nocardia amarae ” myth: a phylogenetic and phenotypic study of mycolic acid-containing actinomycetes isolated from activated sludge foam. Water Sci Technol 46 (1–2):81–90
    [Google Scholar]
  32. Tamaoka J. 1994; Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics pp  463–470 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  33. Uchida K., Kudo T., Suzuki K., Nakase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Yamamura H., Hayakawa M., Nakagawa Y., Tamura T., Kohno T., Komatsu F., Iimura Y. 2005; Nocardia takedensis sp. nov., isolated from moat sediment and scumming activated sludge. Int J Syst Evol Microbiol 55:433–436 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64034-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64034-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error