sp. nov., a non-phytopathogenic bacterium from apple and pear trees Free

Abstract

Bacteria were isolated from flowers and bark of apple and pear trees at three places in Australia. In Victoria, Tasmania and Queensland, strains with white colonies on nutrient agar were screened for dome-shaped colony morphology on agar with sucrose and were found to be closely related by several criteria. The isolates were not pathogenic on apples or pears. They were characterized by a polyphasic approach including microbiological and API assays as well as fatty acid methyl ester analysis, DNA–DNA hybridization and DNA sequencing. For molecular classification, the 16S rRNA cistron and the conserved genes and of these bacteria were investigated. Together with other taxonomic criteria, the results of these studies indicate that the bacteria belong to a novel separate species, which we propose to name sp. nov., with the type strain Et1/99 (=DSM 17950=NCPPB 4357). From DNA–DNA hybridization kinetics, microbiological characteristics and nucleotide sequence analyses, this species is related to pathogenic species, but also to the epiphytic species .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64032-0
2006-12-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2937.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64032-0&mimeType=html&fmt=ahah

References

  1. Auling G., Probst A., Kroppenstedt R. M. 1986; Chemo- and molecular taxonomy of d(−)-tartrate-utilizing pseudomonads. Syst Appl Microbiol 8:114–120 [CrossRef]
    [Google Scholar]
  2. Bascomb S., Manafi M. 1998; Use of enzyme tests in characterization and identification of aerobic and facultatively anaerobic Gram-positive cocci. Clin Microbiol Rev 11:318–340
    [Google Scholar]
  3. Brown E. W., Davis R. M., Gouk C., van der Zwet T. 2000; Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. Int J Syst Evol Microbiol 50:2057–2068 [CrossRef]
    [Google Scholar]
  4. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  5. Busse H. J., El-Banna T., Auling G. 1989; Evaluation of different approaches for identification of xenobiotic degrading pseudomonads. Appl Environ Microbiol 55:1578–1583
    [Google Scholar]
  6. Cerny G. 1976; Method for distinction of the Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 3:223–225 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Fahy P. C., Hayward A. C. 1983; Media and methods for isolation and diagnostic tests. In Plant Bacterial Diseases – a Diagnostic Guide pp  337–375 Edited by Fahy P. C., Persley G. J. Sydney: Academic Press;
    [Google Scholar]
  9. Falkenstein H., Bellemann P., Walter S., Zeller W., Geider K. 1988; Identification of Erwinia amylovora , the fireblight pathogen, by colony hybridization with DNA from plasmid pEA29. Appl Environ Microbiol 54:2798–2802
    [Google Scholar]
  10. Gevers D., Cohan F. M., Lawrence J. G. 8 other authors 2005; Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739 [CrossRef]
    [Google Scholar]
  11. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  12. Hao M. V., Brenner D. J., Steigerwalt A. G., Kosako Y., Komagata K. 1990; Erwinia persicinus , a new species isolated from plants. Int J Syst Bacteriol 40:379–383 [CrossRef]
    [Google Scholar]
  13. Hauben L., Swings J. 2005; Genus XIII. Erwinia Winslow, Broadhurst, Buchanan, Krumweide, Rogers and Smith, 1920, 209AL. part B. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 pp  670–679 Edited by Brenner D. J., Krieg N. R., Staley J. R., Garrity G. M. New York: Springer;
    [Google Scholar]
  14. Hauben L., Moore E. R. B., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J. 1998; Phylogenetic position of phytopathogens within Enterobacteriaceae . Syst Appl Microbiol 21:384–397 [CrossRef]
    [Google Scholar]
  15. Johnson K. B., Stockwell V. O. 2000; Biological control of fire blight. In Fire Blight: the Disease and its Causative Agent Erwinia amylovora pp  319–337 Edited by Vanneste J. Wallingford, UK: CABI Publishing;
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Kim W.-S., Gardan L., Rhim S.-L., Geider K. 1999; Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees ( Pyrus pyrifolia Nakai). Int J Syst Bacteriol 49:899–905 [CrossRef]
    [Google Scholar]
  18. Kim W.-S., Jock S., Paulin J.-P., Rhim S.-L., Geider K. 2001; Molecular detection and differentiation of Erwinia pyrifoliae and host range analysis of the Asian pear pathogen. Plant Dis 85:1183–1188 [CrossRef]
    [Google Scholar]
  19. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. 1994; Biochemistry of homologous recombination in Escherichia coli . Microbiol Rev 58:401–465
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  21. Lloyd A. T., Sharp P. M. 1993; Evolution of the recA gene and the molecular phylogeny of bacteria. J Mol Evol 37:399–407
    [Google Scholar]
  22. Mergaert J., Hauben L., Cnockaert M. C., Swings J. 1999; Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 49:377–383 [CrossRef]
    [Google Scholar]
  23. Richards G. M. 1974; Modification of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Anal Biochem 57:369–376 [CrossRef]
    [Google Scholar]
  24. Suslow T. V., Schroth M. N., Isaka M. 1982; Application of a rapid method for Gram-differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72:917–918 [CrossRef]
    [Google Scholar]
  25. Vanneste J. (editor) 2000 Fire Blight: the Disease and its Causative Agent Erwinia amylovora Wallingford, UK: CABI Publishing;
    [Google Scholar]
  26. Waleron M., Waleron K., Podhajska A. J., Łojkowska E. 2002; Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148:583–595
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  29. Wertz J. E., Goldstone C., Gordon D. M., Riley M. A. 2003; A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248 [CrossRef]
    [Google Scholar]
  30. Zherebilo O. E., Kucheryava N., Gvozdyak R. I., Ziegler D., Scheibner M., Auling G. 2001; Diversity of polyamine patterns in soft rot pathogens and other plant-associated members of the Enterobacteriaceae . Syst Appl Microbiol 24:54–62 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64032-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64032-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed