1887

Abstract

An aerobic, Gram-negative bacterial isolate, strain DX5-10, was isolated from coastal sediment of the East China Sea. The taxonomy of strain DX5-10 was studied by phenotypic and phylogenetic methods. Strain DX5-10 was motile, formed faint-yellowish colonies and was positive for catalase reaction and weakly positive for oxidase reaction. The nearly complete 16S rRNA gene of strain DX5-10 was obtained and sequence analysis indicated that strain DX5-10 represented an independent lineage within the clade of . Strain DX5-10 was phylogenetically related to members of the genera , , , , , , , and , and the sequence identities among them were less than 95·0 %. The predominant respiratory ubiquinone of strain DX5-10 was Q-10 and the DNA G+C content of strain DX5-10 was 63·3 mol%. Therefore, strain DX5-10 represents a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed, with the type strain DX5-10 (=CGMCC 1.3455=JCM 12573).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64013-0
2006-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/3/529.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64013-0&mimeType=html&fmt=ahah

References

  1. Buchan A., Neidle E. L., Moran M. A. 2001; Diversity of the ring-cleaving dioxygenase gene pcaH in a salt marsh bacterial community. Appl Environ Microbiol 67:5801–5809 [CrossRef]
    [Google Scholar]
  2. Cho J.-C., Giovannoni S. J. 2004; Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly- β -hydroxybutyrate-producing marine bacteria in the order ‘ Rhodobacterales ’. Int J Syst Evol Microbiol 54:1129–1136 [CrossRef]
    [Google Scholar]
  3. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp  267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  4. Dai X., Wang Y.-N., Wang B.-J., Liu S.-J., Zhou Y.-G. 2005; Planomicrobium chinense sp. nov., isolated from coastal sediment, and transfer of Planococcus psychrophilus and Planococcus alkanoclasticus to Planomicrobium as Planomicrobium psychrophilum comb. nov. and Planomicrobium alkanoclasticum comb. nov. Int J Syst Evol Microbiol 55:699–702 [CrossRef]
    [Google Scholar]
  5. Eguchi M., Nishikawa T., MacDonald K., Cavicchioli R., Gottschal J. C., Kjelleberg S. 1996; Response to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294
    [Google Scholar]
  6. Eilers H., Pernthaler J., Glöckner F. O., Amann R. 2000; Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051 [CrossRef]
    [Google Scholar]
  7. Garrity G. M., Bell J. A., Lilburn T. G. 2004; Taxonomic outline of the Prokaryotes. In Bergey's Manual of Systematic Bacteriology , 2nd edn. pp  44–48 Release 5.0 New York: Springer; doi: 10.1007/bergeysoutline200405
    [Google Scholar]
  8. González J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the α -subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242
    [Google Scholar]
  9. González J. M., Covert J. S., Whitman W. B. 8 other authors 2003; Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov. dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269 [CrossRef]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  11. Koblížek M., Béjà O., Bidigare R. R., Christensen S., Benitez-Nelson B., Vetriani C., Kolber M. K., Falkowski P. G., Kolber Z. S. 2003; Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338 [CrossRef]
    [Google Scholar]
  12. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  13. Labrenz M., Lawson P. A., Tindall B. J., Collins M. D., Hirsch P. 2005; Roseisalinus antarcticus gen. nov., sp. nov. a novel aerobic bacteriochlorophyll a -producing α -proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47 [CrossRef]
    [Google Scholar]
  14. Macián M. C., Arahal D. R., Garay E., Ludwig W., Schleifer K. H., Pujalte M. J. 2005; Thalassobacter stenotrophicus gen. nov., sp. nov. a novel marine α -proteobacterium isolated from Mediteranean sea water. Int J Syst Evol Microbiol 55:105–110 [CrossRef]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  16. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., del Moral A., Béjar V. 2004; Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α - Proteobacteria . Int J Syst Evol Microbiol 54:1735–1740 [CrossRef]
    [Google Scholar]
  17. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J., Lebaron P., Bernard L., Stackebrandt E. 1999; Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α - Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  18. Rappé M. S., Vergin K., Giovannoni S. J. 2000; Phylogenetic comparisons of a coastal bacteriophankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219–232 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov. sp. nov. – a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Mikrobiologiia 64:354–365
    [Google Scholar]
  21. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 1999; Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov. aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49:629–634 [CrossRef]
    [Google Scholar]
  22. Teske A., Brinkhoff T., Muyzer G., Moser D. P., Rethmeier J., Jannasch H. W. 2000; Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66:3125–3133 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  24. Urbance J. W., Bratina B. J., Stoddard S. F., Schmidt T. M. 2001; Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov. which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070 [CrossRef]
    [Google Scholar]
  25. Van de Peer Y., De Wachter R. 1994; treecon for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  26. Van Trappen S. V., Mergaert J., Swings J. 2004; Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov. new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1263–1269 [CrossRef]
    [Google Scholar]
  27. Zhang D., Yang H., Zhang W., Hung Z., Liu S.-J. 2003; Rhodocista pekingense sp. nov., a cyst-forming phototrophophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 53:1111–1114 [CrossRef]
    [Google Scholar]
  28. Zubkov M. V., Fuchs B. M., Archer S. D., Kiene R. P., Amann R., Burkill P. H. 2001; Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64013-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64013-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error