1887

Abstract

A novel anaerobic, moderately thermophilic, spore-forming bacterium, designated strain BR, was isolated from deep-sea hydrothermal core samples collected at the Rainbow vent field on the Mid-Atlantic Ridge (36° 14′ N 33° 54′ W). The cells were found to be rod-shaped, non-motile, Gram-positive and spore-forming. The organism grew in the temperature range 37–60 °C, with an optimum at 55 °C, and at pH values in the range 6–8.5, with an optimum around pH 7. NaCl concentrations for growth were in the range 10–40 g l, with an optimum at 20–30 g l. Strain BR grew chemo-organoheterotrophically with carbohydrates, proteinaceous substrates and organic acids with nitrate as electron acceptor. The novel isolate was not able to ferment. The G+C content of the genomic DNA was 34.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain BR in the within the class ‘’. On the basis of the phenotypic and phylogenetic data, this isolate should be described as a member of a novel genus, for which the name gen. nov. is proposed. The type species is sp. nov., with the type strain BR (=DSM 14931=JCM 12998).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64012-0
2006-05-01
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/5/1047.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64012-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum G. E., Woese G. E., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [CrossRef]
    [Google Scholar]
  3. Boone D. R., Liu Y., Zhao Z. J., Balkwill D. L., Drake G. R., Stevens T. O., Aldrich H. C. 1995; Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448 [CrossRef]
    [Google Scholar]
  4. Brisbarre N., Fardeau M.-L., Cueff V. 7 other authors 2003; Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 53:1043–1049 [CrossRef]
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  6. Cataldo D. A., Haroon M., Schrader L. E., Youngs V. L. 1975; Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80 [CrossRef]
    [Google Scholar]
  7. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  8. Fardeau M.-L., Bonilla Salinas M., L'Haridon S., Jeanthon C., Verhé F., Cayol J.-L., Patel B. K. C., Garcia J.-L., Ollivier B. 2004; Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus : reassignment of T. subterraneus , Thermoanaerobacter yonseiensis , Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Fortina M. G., Pukall R., Schumann P., Mora D., Parini C., Manachini P. L., Stackebrandt E. 2001a; Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov.. Int J Syst Evol Microbiol 51:447–455
    [Google Scholar]
  11. Fortina M. G., Mora D., Schumann P., Parini C., Manachini P. L., Stackebrandt E. 2001b; Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000. comb. nov.. Int J Syst Evol Microbiol 51:2063–2071 [CrossRef]
    [Google Scholar]
  12. Garrity G. M., Bell J. A., Lilburn T. G. 2003; Taxonomic outline of the prokaryotes. In Bergey's Manual of Systematic Bacteriology release 4.0 http://141.150.157.80/bergeysoutline/main.htm
    [Google Scholar]
  13. Jeanthon C. 2000; Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77:117–133 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–96 [CrossRef]
    [Google Scholar]
  16. Kämpfer P. 2002; Whole-cell fatty acid analysis in the systematics of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives pp  271–299 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell;
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  18. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  19. Marteinsson V. T., Birrien J. L., Jeanthon C., Prieur D. 1996; Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol Ecol 21:255–266 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., Minnikin M. 1981; Lipids in the classification of Bacillus and related taxa. In The Aerobic Endospore-Forming Bacteria (Special Publications of the Society for General Microbiology no. 4) pp  59–90 Edited by Berkeley R. C. W., Goodfellow M. London: Academic Press;
    [Google Scholar]
  22. Miroshnichenko M. L., Kostrikina N. A., L'Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. 2002; Nautilia lithotrophica gen. nov., sp. nov. a thermophilic sulphur-reducing ϵ -proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304 [CrossRef]
    [Google Scholar]
  23. Miroshnichenko M. L., L'Haridon S., Schumann P., Spring S., Bonch-Osmolovskaya E. A., Jeanthon C., Stackebrandt E. 2004; Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘ Epsilonproteobacteria ’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45 [CrossRef]
    [Google Scholar]
  24. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp  21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Nazina T. N., Tourova T. P., Poltaraus A. B. 8 other authors 2001; Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus , Bacillus thermocatenulatus , Bacillus thermoleovorans, Bacillus kaustophilus , Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus , G.thermocatenulatus , G. thermoleovorans, G. kaustophilus , G. thermoglucosidasius and G. thermodenitrificans . Int J Syst Evol Microbiol 51, 433–446
  26. Nercessian O., Fouquet Y., Pierre C., Prieur D., Jeanthon C. 2005; Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7:698–714 [CrossRef]
    [Google Scholar]
  27. Nystrand R. 1984; Saccharococcus thermophilus gen. nov., sp. nov., isolated from beet sugar extraction. Syst Appl Microbiol 5:204–219 [CrossRef]
    [Google Scholar]
  28. O'Leary W. M., Wilkinson S. G. 1988; Gram-positive bacteria. In Microbial Lipids pp  117–201 Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  29. Pikuta E., Lysenko A., Chuvilskaya N., Mendrock U., Hippe H., Suzina N., Nikitin D., Osipov G., Laurinavichius K. 2000; Anoxybacillus pushchinensis gen. nov., sp. nov. a novel anaerobic alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117 [CrossRef]
    [Google Scholar]
  30. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  31. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α , ϵ -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  32. Santini J. M., Streimann I. C. A., vanden Hoven R. N. 2004; Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol 54:2241–2244 [CrossRef]
    [Google Scholar]
  33. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  34. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing anaerobic thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [CrossRef]
    [Google Scholar]
  35. Slobodkin A. I., Tourova T. P., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A., Jeanthon C., Jones B. E. 2003; Tepidibacter thalassicus gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, fermentative bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1131–1134 [CrossRef]
    [Google Scholar]
  36. Sokolova T. G., Gonzalez J. M., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kato C., Bonch-Osmolovskaya E. A., Robb F. T. 2001; Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149
    [Google Scholar]
  37. Spring S., Wagner M., Schumann P., Kämpfer P. 2005; Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkonate- and polyphosphate-accumulating bacterium isolated from activated sludge and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. Int J Syst Evol Microbiol 55:621–629 [CrossRef]
    [Google Scholar]
  38. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis , sp. nov., and Bacillus selenitireducens , sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef]
    [Google Scholar]
  39. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003; Isolation and phylogenetic diversity of members of previously uncultivated epsilon- Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  40. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  41. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  42. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  43. Urios L., Cueff V., Pignet P., Barbier G. 2004; Tepidibacter formicigenes sp. nov., a novel spore-forming bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:439–443 [CrossRef]
    [Google Scholar]
  44. Wery N., Moricet J.-M., Cueff V., Jean J., Pignet P., Lesongeur F., Cambon-Bonavita M.-A., Barbier G. 2001; Caloranaerobacter azorensis gen. nov., sp. nov. an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:1789–1796 [CrossRef]
    [Google Scholar]
  45. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64012-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64012-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error