1887

Abstract

A Gram-negative, rod-shaped organism (CCUG 49520) was isolated from the midgut of the mosquito . 16S rRNA gene sequence analysis demonstrated that this isolate is unique, showing <93 % similarity to species of the families and . The quinone system consisted exclusively of ubiquinone Q-8; the polar lipid profile consisted of the major compounds phosphatidylethanolamine and phosphatidylglycerol, a moderate to minor amount of two unknown aminophospholipids, an unknown phospholipid and two unknown polar lipids; the polyamine pattern was characterized by the predominant compound 1,3-diaminopropane and showed some significant differences when compared with members of the and . On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic data, strain CCUG 49520 is considered to represent a new genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is CCUG 49520 (=CIP 108754).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63999-0
2006-02-01
2021-04-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/2/335.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63999-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hamana K. 1996; Distribution of diaminopropane and acetylspermidine in Enterobacteriaceae . Can J Microbiol 42:107–114 [CrossRef]
    [Google Scholar]
  6. Hamana K. 1997; Polyamine distribution patterns within the families Aeromonadaceae , Vibrionaceae , Pasteurellaceae , and Halomonadaceae , and related genera of the gamma subclass of the Proteobacteria . J Gen Appl Microbiol 43:49–59 [CrossRef]
    [Google Scholar]
  7. Kämpfer P. 1990; Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae . Zentralbl Bakteriol 273:164–172 [CrossRef]
    [Google Scholar]
  8. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef]
    [Google Scholar]
  11. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  12. Lindh J. M., Terenius O., Faye I. 2005; 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 71:7217–7223 [CrossRef]
    [Google Scholar]
  13. Svoboda P., Harms-Ringdahl M. 2002; Kinetics of phosphate-mediated oxidation of ferrous iron and formation of 8-oxo-2′-deoxyguanosine in solutions of free 2′-deoxyguanosine and calf thymus DNA. Biochim Biophys Acta 157145–54 [CrossRef]
    [Google Scholar]
  14. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  15. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  16. Wilkinson S. G. 1988; Gram-negative bacteria. In Microbial Lipids vol 1 pp  299–488 Edited by Ratledge C., Wilkinson S. G. New York: Academic Press;
    [Google Scholar]
  17. Yamamoto S., Shinoda S., Kawaguchi M., Wakamatsu K., Makita M. 1983; Polyamine distribution in Vibrionaceae : norspermidine as a general constituent of Vibrio species. Can J Microbiol 29:724–728 [CrossRef]
    [Google Scholar]
  18. Yamamoto S., Chowdhury M. A. R., Kuroda M., Nakano T., Koumoto Y., Shinoda S. 1991; Further study on polyamine compositions in Vibrionaceae . Can J Microbiol 37:148–153 [CrossRef]
    [Google Scholar]
  19. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: Gram-negative eubacteria. Bull JFCC 8:136–171
    [Google Scholar]
  20. Zherebilo O., Kucheryava N., Gvozdyak R. I., Ziegler D., Scheibner M., Auling G. 2001; Diversity of polyamine patterns in soft rot pathogens and other plant-associated members of the Enterobacteriaceae . Syst Appl Microbiol 24:54–62 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63999-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63999-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error