1887

Abstract

Three thermophilic, anaerobic, strictly chemolithoautotrophic, sulphur- and/or thiosulphate-reducing bacteria, designated SL17, SL19 and SL22, were isolated from deep-sea hydrothermal samples collected at 13 °N (East Pacific Rise), Guaymas Basin (Gulf of California) and 23 °N (Mid-Atlantic Ridge), respectively. These strains differed in their morphology, temperature range and optimum for growth, energy substrates and 16S rRNA gene sequences. The G+C content of the genomic DNA was 41 mol% (SL22), 42 mol% (SL17) and 46 mol% (SL19). Comparative analysis of phenotypic and phylogenetic traits indicated that strains SL17 and SL22 represented two novel species of the genus and that strain SL19 should be considered as a novel species of the genus . The names sp. nov. (type strain SL17=DSM 15522=JCM 12127), sp. nov. (type strain SL22=DSM 15668=JCM 12129) and sp. nov. (type strain SL19=DSM 15521=JCM 12128) are proposed for these organisms. Furthermore, phylogenetic data based on 16S rRNA gene sequence analyses correlated with the significant phenotypic differences between members of the lineage encompassing the genera , and and that of the families and . It is therefore proposed that this lineage represents a new family, fam. nov., within the order .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63994-0
2006-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2843.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63994-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Rolland, S., Crassous, P. & 9 other authors ( 2003; ). Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium. Extremophiles 7, 361–370.[CrossRef]
    [Google Scholar]
  2. Beh, M., Strauss, G., Huber, R., Stetter, K. O. & Fuchs, G. ( 1993; ). Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch Microbiol 160, 306–311.[CrossRef]
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  4. Burggraf, S., Olsen, G. J., Stetter, K. O. & Woese, C. R. ( 1992; ). A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15, 352–356.[CrossRef]
    [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. De Rosa, M. & Gambacorta, A. ( 1994; ). Archaeal lipids. In Chemical Methods in Prokaryotic Systematics, pp. 197–264. Edited by M. Goodfellow & A. G. O'Donnell. New York: Wiley.
  7. Doddrell, D. M., Pegg, D. T. & Bendall, M. R. ( 1982; ). Distortionless enhancement of NMR signals by polarization transfer. J Magn Reson 48, 323–327.
    [Google Scholar]
  8. Eder, W. & Huber, R. ( 2002; ). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6, 309–318.[CrossRef]
    [Google Scholar]
  9. Ferrante, G., Ekiel, I. & Sprott, G. D. ( 1987; ). Structures of diether lipids of Methanospirillum hungatei containing novel head groups N,N-dimethylamino- and N,N,N-trimethylaminopentanetetrol. Biochim Biophys Acta 921, 281–291.[CrossRef]
    [Google Scholar]
  10. Götz, D., Banta, A., Beveridge, T. J., Rushdi, A. I., Simoneit, B. R. T. & Reysenbach, A. L. ( 2002; ). Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52, 1349–1359.[CrossRef]
    [Google Scholar]
  11. Harmsen, H. J. M., Prieur, D. & Jeanthon, C. ( 1997; ). Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol 63, 4061–4068.
    [Google Scholar]
  12. Huber, R., Wilharm, T., Huber, D. & 7 other authors ( 1992; ). Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15, 340–351.[CrossRef]
    [Google Scholar]
  13. Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K. O. ( 1998; ). Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64, 3576–3583.
    [Google Scholar]
  14. Huber, H., Diller, S., Horn, C. & Rachel, R. ( 2002; ). Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52, 1859–1865.[CrossRef]
    [Google Scholar]
  15. Huber, J. A., Butterfield, D. A. & Baross, J. A. ( 2003; ). Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43, 393–409.[CrossRef]
    [Google Scholar]
  16. Jahnke, L. L., Eder, W., Huber, R., Hope, J. M., Hinrichs, K.-U., Hayes, J. M., Des Marais, D. J., Cady, S. L. & Summons, R. E. ( 2001; ). Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67, 5179–5189.[CrossRef]
    [Google Scholar]
  17. Jeanthon, C., L'Haridon, S., Cueff, V., Banta, A., Reysenbach, A.-L. & Prieur, D. ( 2002; ). Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52, 765–772.[CrossRef]
    [Google Scholar]
  18. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro, New York: Academic Press.
  19. Kawasumi, T., Igarashi, Y., Kodama, T. & Minoda, Y. ( 1984; ). Hydrogenobacter thermophilus gen. nov. sp. nov., an extremely thermophilic aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34, 5–10.[CrossRef]
    [Google Scholar]
  20. Koga, Y., Nishihara, M., Morii, H. & Akagawa-Matsushita, M. ( 1993; ). Ether polar lipids of methanogenic bacteria: structures, comparative aspects and biosyntheses. Microbiol Rev 57, 164–182.
    [Google Scholar]
  21. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Braker, G. & Hirsch, P. ( 1998; ). Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48, 1363–1372.[CrossRef]
    [Google Scholar]
  22. L'Haridon, S. & Jeanthon, C. ( 2001; ). Genus incertae sedis I. Desulfurobacterium L'Haridon, Cilia, Messner, Raguénès, Gambacorta, Sleytr, Prieur and Jeanthon 1998, 709VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 366–367. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  23. L'Haridon, S., Cilia, V., Messner, P., Raguénès, G., Gambacorta, A., Sleytr, U. B., Prieur, D. & Jeanthon, C. ( 1998; ). Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48, 701–711.[CrossRef]
    [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. ( 1989; ). Precise measurements of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  25. Miller, T. L. & Wolin, M. J. ( 1974; ). A serum bottle modification of Hungate technique for cultivating obligate anaerobes. Appl Environ Microbiol 27, 985–987.
    [Google Scholar]
  26. Nakagawa, S., Nakamura, S., Inagaki, F., Takai, K., Shirai, N. & Sako, Y. ( 2004; ). Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54, 2079–2084.[CrossRef]
    [Google Scholar]
  27. Pfennig, N., Widdel, F. & Trüper, H. G. ( 1981; ). The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 926–940. Edited by M. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. New York: Springer.
  28. Reysenbach, A. L. ( 2001a; ). Phylum B1. Aquificae phy. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 359. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  29. Reysenbach, A. L. ( 2001b; ). Order I Aquificales ord. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 359. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  30. Reysenbach, A. L. ( 2002; ). Aquificales ord. nov. In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 85. Int J Syst Evol Microbiol 52, 685–690.[CrossRef]
    [Google Scholar]
  31. Reysenbach, A. L., Longnecker, K. & Kirshtein, J. ( 2000; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  32. Schäfer, S., Barkowski, C. & Fuchs, G. ( 1986; ). Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch Microbiol 146, 301–308.[CrossRef]
    [Google Scholar]
  33. Schönheit, P. & Schäfer, T. ( 1995; ). Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11, 26–57.[CrossRef]
    [Google Scholar]
  34. Selig, M. & Schönheit, P. ( 1994; ). Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle. Arch Microbiol 162, 286–294.[CrossRef]
    [Google Scholar]
  35. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  36. Stöhr, R., Waberski, A., Völker, H., Tindall, B. J. & Thomm, M. ( 2001; ). Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51, 1853–1862.[CrossRef]
    [Google Scholar]
  37. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003a; ). Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53, 823–827.[CrossRef]
    [Google Scholar]
  38. Takai, K., Nakagawa, S., Sako, Y. & Horokoshi, K. ( 2003b; ). Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53, 1947–1954.[CrossRef]
    [Google Scholar]
  39. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  40. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  41. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  42. Vetriani, C., Speck, M. D., Ellor, S. V., Lutz, R. A. & Starovoytov, V. ( 2004; ). Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54, 175–181.[CrossRef]
    [Google Scholar]
  43. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  44. Yoshino, J. I., Sugiyama, Y., Sakuda, S., Kodama, T., Nagasawa, H., Ishii, M. & Igarashi, Y. ( 2001; ). Chemical structure of a novel aminophospholipid from Hydrogenobacter thermophilus strain TK-6. J Bacteriol 183, 6302–6304.[CrossRef]
    [Google Scholar]
  45. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63994-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63994-0
Loading

Data & Media loading...

Supplements

[PDF] 

PDF

[PDF] 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error