1887

Abstract

A Gram-positive, rod-shaped, endospore-forming organism, strain CCUG 47242, was isolated from a sample of industrial starch production in Sweden. 16S rRNA gene sequence analysis demonstrated that this isolate was moderately related to species of the genus , with <94·4 % sequence similarity to all other hitherto described species. Strain CCUG 47242 showed the greatest sequence similarity (96·5 %) to ‘’ HKU3, a strain with a name that has not yet been validly published. Chemotaxonomic data [major menaquinone, MK-7 (98 %); major polar lipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysyl-phosphatidylglycerol, two unknown phospholipids, four unknown aminophospholipids; major fatty acids, iso-C16 : 0 and anteiso-C15 : 0] showed some significant differences when compared with the type species of the genus , . Physiological and biochemical tests allowed clear phenotypic differentiation of strain CCUG 47242 from strain HKU3. On the basis of 16S rRNA gene sequence analysis, in combination with chemotaxonomic data, strains CCUG 47242 and HKU3 represent two novel species of a new genus of endospore-forming bacteria for which we propose the names gen. nov., sp. nov. (type strain CCUG 47242=CIP 108492=DSM 17683) and sp. nov. (type strain HKU3=CCUG 49571=CIP 107898=DSM 17642).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63985-0
2006-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/4/781.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63985-0&mimeType=html&fmt=ahah

References

  1. Aguilera, M., Monteoliva-Sánchez, M., Suárez, A., Guerra, V., Lizama, C., Bennasar, A. & Ramos-Cormenzana, A. ( 2001; ). Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater. Int J Syst Evol Microbiol 51, 1687–1692.[CrossRef]
    [Google Scholar]
  2. Ash, C., Farrow, J. A. E., Wallbanks, S. & Collins, M. D. ( 1991; ). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13, 202–206.
    [Google Scholar]
  3. Ash, C., Priest, F. G. & Collins, M. D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  4. Ash, C., Priest, F. G. & Collins, M. D. ( 1994; ). Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44, 852.[CrossRef]
    [Google Scholar]
  5. Berge, O., Guinebretière, M.-H., Achouak, W., Normand, P. & Heulin, T. ( 2002; ). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52, 607–616.
    [Google Scholar]
  6. Bosshard, P. P., Zbinden, R. & Altwegg, M. ( 2002; ). Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. Int J Syst Evol Microbiol 52, 2241–2249.[CrossRef]
    [Google Scholar]
  7. Elo, S., Suominen, I., Kämpfer, P., Juhanoja, J., Salkinoja-Salonen, M. & Haahtela, K. ( 2001; ). Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51, 535–545.
    [Google Scholar]
  8. Fischer, W. & Arneth-Seifert, D. ( 1998; ). d-Alanylcardiolipin, a major component of the unique lipid pattern of Vagococcus fluvialis. J Bacteriol 180, 2950–2957.
    [Google Scholar]
  9. Fischer, W. & Leopold, K. ( 1999; ). Polar lipids of four listeria species containing l-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol 49, 653–662.[CrossRef]
    [Google Scholar]
  10. Genersch, E., Forsgren, E., Pentikäinen, J., Ashiralieva, A., Rauch, S., Kilwinski, J. & Fries, I. ( 2006; ). Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol 56, 501–511.[CrossRef]
    [Google Scholar]
  11. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  12. Gould, R. M. & Lennarz, W. J. ( 1967; ). Biosynthesis of aminoacyl derivatives of phosphatidylglycerol. Biochem Biophys Res Commun 26, 510–515.[CrossRef]
    [Google Scholar]
  13. Gould, R. M. & Lennarz, W. J. ( 1970; ). Metabolism of phosphatidylglycerol and lysyl-phosphatidylglycerol in Staphylococcus aureus. J Bacteriol 104, 1135–1144.
    [Google Scholar]
  14. Heyrman, J., Logan, N.A., Rodríguez-Díaz, M., Scheldeman, P., Lebbe, L., Swings, J., Heyndrickx, M. & De Vos, P. ( 2005; ). Study of mural painting isolates, leading to the transfer of ‘Bacillus maroccanus’ and ‘Bacillus carotarum’ to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to ‘Bacillus macroides’ and description of Bacillus muralis sp. nov. Int J Syst Evol Microbiol 55, 119–131.[CrossRef]
    [Google Scholar]
  15. Iida, K., Ueda, Y., Kawamura, Y., Ezaki, T., Takade, A., Yoshida, S. & Amako, K. ( 2005; ). Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. Int J Syst Evol Microbiol 55, 1811–1816.[CrossRef]
    [Google Scholar]
  16. Kämpfer, P. ( 2002; ). Whole-cell fatty acid analysis in the systematics of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives, pp. 271–299. Edited by R. Berkeley, M. Heyndrickx, N. Logan & P. De Vos. Oxford: Blackwell Science.
  17. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  18. Kämpfer, P., Steiof, M. & Dott, W. ( 1991; ). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef]
    [Google Scholar]
  19. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J. ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef]
    [Google Scholar]
  20. Kim, D.-S., Bae, C.-Y., Jeon, J.-J., Chun, S.-J., Oh, H. W., Hong, S. G., Baek, K.-S., Moon, E. Y. & Bae, K. S. ( 2004; ). Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 54, 2031–2035.[CrossRef]
    [Google Scholar]
  21. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  22. Lennarz, W. J., Nesbitt, J. A., III & Reiss, J. ( 1966; ). The participation of sRNA in the enzymatic synthesis of o-l-lysyl phosphatidylglycerol in Staphylococcus aureus. Proc Natl Acad Sci U S A 55, 934–941.[CrossRef]
    [Google Scholar]
  23. Meehan, C., Bjourson, A. J. & McMullan, G. ( 2001; ). Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 51, 1681–1685.[CrossRef]
    [Google Scholar]
  24. Minnikin, D. E. & Goodfellow, M. ( 1981; ). Lipids in the classification of Bacillus and related taxa. In The Aerobic Endospore-Forming Bacteria, pp. 59–90. Special Publication of the Society for General Microbiology, no. 4. Edited by R. C. W. Berkeley & M. Goodfellow. London: Academic Press.
  25. Montes, J. Ma, Mercadé, E., Bozal, N. & Guinea, J. ( 2004; ). Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54, 1521–1526.[CrossRef]
    [Google Scholar]
  26. Nahaie, M. R., Goodfellow, M., Minnikin, D. E. & Hájek, V. ( 1984; ). Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J Gen Microbiol 130, 2427–2437.
    [Google Scholar]
  27. Oku, Y., Kurokawa, K., Ichihashi, N. & Sekimizu, K. ( 2004; ). Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150, 45–51.[CrossRef]
    [Google Scholar]
  28. O'Leary, W. M. & Wilkinson, S. G. ( 1988; ). Gram-positive bacteria. In Microbial Lipids, vol. 1, pp.117–201. Edited by C. Ratledge & S. G. Wilkinson. London: Academic Press.
  29. Pen∼a, A., Valens, M., Santos, F., Buczolits, S., Antón, J., Kämpfer, P., Busse, H.-J., Amann, R. & Rosselló-Mora, R. ( 2005; ). Intraspecific comparative analysis of the species Salinibacter ruber. Extremophiles 9, 151–161.[CrossRef]
    [Google Scholar]
  30. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2005a; ). Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55, 405–408.[CrossRef]
    [Google Scholar]
  31. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2005b; ). Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55, 743–746.[CrossRef]
    [Google Scholar]
  32. Rodríguez-Díaz, M., Lebbe, L., Rodelas, B., Heyrman, J., De Vos, P. & Logan, N. A. ( 2005; ). Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int J Syst Evol Microbiol 55, 2093–2099.[CrossRef]
    [Google Scholar]
  33. Saha, P., Mondal, A. K., Mayilraj, S., Krishnamurthi, S., Bhattacharya, A. & Chakrabarti, T. ( 2005; ). Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 55, 2577–2581.[CrossRef]
    [Google Scholar]
  34. Sánchez, M. M., Fritze, D., Blanco, A., Spröer, C., Tindall, B. J., Schumann, P., Kroppenstedt, R. M., Diaz, P. & Pastor, F. I. J. ( 2005; ). Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55, 935–939.[CrossRef]
    [Google Scholar]
  35. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K. ( 1997; ). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef]
    [Google Scholar]
  36. Šmerda, J., Sedláček, I., Páčová, Z., Durnová, E., Smíšková, A. & Havel, L. ( 2005; ). Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 55, 2351–2354.[CrossRef]
    [Google Scholar]
  37. Stackebrandt, E. & Swiderski, J. ( 2002; ). From phylogeny to systematics: the dissection of the genus Bacillus. In Applications and Systematics of Bacillus and Relatives, pp. 8–22. Edited by R. Berkeley, M. Heyndrickx, N. Logan & P. De Vos. Oxford: Blackwell Science.
  38. Takeda, M., Suzuki, I. & Koizumi, J. ( 2005; ). Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 55, 737–741.[CrossRef]
    [Google Scholar]
  39. Teng, J. L., Woo, P. C., Leung, K. W., Lau, S. K., Wong, M. K. & Yuen, K. Y. ( 2003; ). Pseudobacteraemia in a patient with neutropenic fever caused by a novel paenibacillus species: Paenibacillus hongkongensis sp. nov. Mol Pathol 56, 29–35.[CrossRef]
    [Google Scholar]
  40. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  41. Tindall, B. J. ( 1990; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  42. Touzel, J. P. O'Donohue, M., Debeire, P., Samain, E. & Breton, C. ( 2000; ). Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50, 315–320.[CrossRef]
    [Google Scholar]
  43. von der Weid, I., Duarte, G. F., van Elsas, J. D. & Seldin, L. ( 2002; ). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52, 2147–2153.[CrossRef]
    [Google Scholar]
  44. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  45. Yoon, J.-H., Oh, H.-M., Yoon, B.-D., Kang, K. H. & Park, Y.-H. ( 2003; ). Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53, 295–301.[CrossRef]
    [Google Scholar]
  46. Yoon, J.-H., Kang, S.-J., Yeo, S.-H. & Oh, T.-K. ( 2005; ). Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55, 2339–2344.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63985-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63985-0
Loading

Data & Media loading...

vol. , part 4, pp. 781 - 786



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error