1887

Abstract

Four formate-utilizing methanogens were isolated from ovine (strain KM1H5-1P) and bovine (strains AK-87, OCP and ZA-10) rumen contents. Based on 16S rRNA gene sequence analysis, the methanogen strains were found to belong to the order in the genus . Strains ZA-10 and KM1H5-1P gained energy for growth by the reduction of CO to CH using H or formate exclusively as electron donors. Increasing formate concentrations to 220 mM in batch cultures increased the growth of strain KM1H5-1P but did not affect the growth of strain ZA-10. Substrate specificity and resistance to cell-wall lysis supported the affiliation of the strains to the genus . Strains ZA-10 and KM1H5-1P showed 16S rRNA gene sequence similarity of 98.0 and 98.6 % to their closest recognized relatives, CW and M1, respectively. DNA–DNA hybridization experiments indicated that the strains were not affiliated at the species level to their closest recognized relatives, with DNA reassociation values of only 28 % between strains ZA-10 and CW and <25 % between strains KM1H5-1P and M1. Based on the data presented, the new strains are considered to represent two novel species of the genus , for which the names sp. nov. (type strain ZA-10=DSM 16643=OCM 820) and sp. nov. (type strain KM1H5-1P=DSM 16632=OCM 841) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63984-0
2007-03-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/450.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63984-0&mimeType=html&fmt=ahah

References

  1. Asakawa, S., Morii, H., Akagawa-Matsushita, M., Koga, Y. & Hayano, K. ( 1993; ). Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA–DNA hybridization among M. arboriphilicus strains. Int J Syst Bacteriol 43, 683–686.[CrossRef]
    [Google Scholar]
  2. Asanuma, N., Iwamoto, M. & Hino, T. ( 1999; ). The production of formate, a substrate for methanogenesis, from compounds related with the glyoxylate cycle by mixed ruminal microbes. Anim Sci Technol 70, 67–73.
    [Google Scholar]
  3. Balch, W. E., Fox, C. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  4. Boone, D. R. & Whitman, W. B. ( 1988; ). Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38, 212–219.[CrossRef]
    [Google Scholar]
  5. Bowman, J. P., McCammon, S. A., Brown, J. L. & McMeekin, T. A. ( 1998; ). Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48, 1213–1222.[CrossRef]
    [Google Scholar]
  6. Daniels, L., Belay, N. & Mulchopadahyay, B. ( 1984; ). Considerations for the use and large-scale growth of methanogenic bacteria. Biotechnol Bioeng Symp 14, 199–213.
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 2004; ). phylip (phylogeny inference package), version 3.62c. Department of Genome Sciences, University of Washington, Seattle, USA.
  9. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  10. Huß, V. A. R., Festl, H. & Scleifer, K.-H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  11. Kandler, O. & Konig, H. ( 1985; ). Cell envelopes of Archebacteria. In The Bacteria, vol. 8, Archaebacteria, pp. 413–457. Edited by C. R. Woese & R. S. Wolfe. New York: Academic Press.
  12. Kicic, A. ( 1995; ). Bovine rumen methanogens – isolation and presumptive identification. Honours thesis, University of Western Australia, Nedlands, WA, Australia.
  13. Kimura, M. ( 1980; ). A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  14. Konig, H. ( 1995; ). Isolation and analysis of cell walls from methanogenic Archaea. In Archaea: a Laboratory Manual, vol. 2, Methanogens, pp. 315–328. Edited by K. R. Sowers & H. T. Schreier. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  15. Lin, C. & Miller, T. L. ( 1998; ). Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169, 397–403.[CrossRef]
    [Google Scholar]
  16. Lovley, D. R., Greening, R. C. & Ferry, J. G. ( 1984; ). Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48, 81–87.
    [Google Scholar]
  17. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  18. Miller, T. L. ( 2001; ). Genus II. Methanobrevibacter Balch and Wolfe 1981, 216VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 218–226. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  19. Miller, T. L. & Lin, C. ( 2002; ). Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52, 819–822.[CrossRef]
    [Google Scholar]
  20. Miller, T. L., Wolin, M. J., Conway de Macario, E. & Macario, A. J. L. ( 1982; ). Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43, 227–232.
    [Google Scholar]
  21. Morii, H., Nishihara, M. & Koga, Y. ( 1983; ). Isolation, characterization and physiology of a new formate assimilable methanogenic strain (A2) of Methanobrevibacter arborphilicus. Agric Biol Chem 47, 2781–2789.[CrossRef]
    [Google Scholar]
  22. Muller, V., Blaut, M. & Gottschalk, G. ( 1993; ). Bioenergetics of methanogenesis. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, pp. 360–406. Edited by J. G. Ferry. New York: Chapman & Hall.
  23. Munyard, K. ( 2000; ). Ecology of methanogens in the rumen. PhD thesis, University of Western Australia, Nedlands, WA, Australia.
  24. Prescott, L. M., Harley, J. P. & Klein, D. A. ( 1999; ). Microbiology, 4th edn. New York: WCB/McGraw-Hill.
  25. Savant, D. V., Shouche, Y. S., Prakash, S. & Ranade, D. R. ( 2002; ). Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52, 1081–1087.[CrossRef]
    [Google Scholar]
  26. Sly, L. I., Blackall, L. L., Kraat, P. C., Tian-Shen, T. & Sangkhobol, V. ( 1986; ). The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5, 139–156.[CrossRef]
    [Google Scholar]
  27. Sowers, K. R. & Noll, K. M. ( 1995; ). Techniques for anaerobic growth. In Archaea: a Laboratory Manual, vol. 2, Methanogens, pp. 15–48. Edited by K. R. Sowers & H. T. Schreier. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  28. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  29. Wright, A.-D. G. & Pimm, C. ( 2003; ). Improved strategy for presumptive identification of methanogens using 16S riboprinting. J Microbiol Methods 55, 337–349.[CrossRef]
    [Google Scholar]
  30. Wright, A.-D. G., Kennedy, P., O'Neill, C., Toovey, A. F., Popovski, S., Rea, S. M., Pimm, C. L. & Klein, L. ( 2004a; ). Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22, 3976–3985.[CrossRef]
    [Google Scholar]
  31. Wright, A.-D. G., Williams, A. J., Winder, B., Christophersen, C. T., Rodgers, S. L. & Smith, K. D. ( 2004b; ). Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70, 1263–1270.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63984-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63984-0
Loading

Data & Media loading...

vol. , part 3, pp. 450 - 456

Growth parameters of M1 , PS and strains ZA-10 and KM1H5-1P .

DNA–DNA hybridization values and 16S rRNA gene sequence similarity for species and strains.

[PDF file of Supplementary Tables S1 and S2](17 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error