sp. nov., isolated from a warm spring Free

Abstract

A Gram-negative, facultatively anaerobic bacterial strain designated GPTSA-6 was isolated from a water sample collected from a warm spring in Assam, India. Preliminary analysis of the 16S rRNA gene sequence of this isolate revealed its affiliation to the family . Detailed characterization using a polyphasic approach indicated that strain GPTSA-6 is most closely related to but differs significantly from existing members of the genus . Analysis of the almost-complete (1430 nt) 16S rRNA gene sequence of this strain revealed that its closest relative (99.23 % similarity) is an uncultured bacterial clone, A-8, isolated from an algal bloom. Of the taxa with validly published names, ATCC 43979 showed the highest level of sequence similarity (95.13 %) with respect to strain GPTSA-6, followed by 848T and LMG 17541 (95.04 % similarity in both cases). On the basis of the phenotypic, chemotaxonomic and phylogenetic data, it can be concluded that strain GPTSA-6 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GPTSA-6 (=MTCC 7090=DSM 17445).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63972-0
2006-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1905.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63972-0&mimeType=html&fmt=ahah

References

  1. Baumann P., Bowditch R. D., Baumann L., Beaman B. 1983; Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica ; and P. doudoroffii . Int J Syst Bacteriol 33:857–865 [CrossRef]
    [Google Scholar]
  2. Brown G. R., Sutcliffe I. C., Cummings S. P. 2001; Reclassification of [ Pseudomonas ] doudoroffii (Baumann et al . 1983) into the genus Oceanimonas gen. nov. as Oceanimonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanimonas baumannii sp. nov. Int J Syst Evol Microbiol 51:67–72
    [Google Scholar]
  3. Colwell R. R., MacDonell M. T., De Ley J. 1986; Proposal to recognize the family Aeromonadaceae fam. nov. Int J Syst Bacteriol 36:473–477 [CrossRef]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  6. Fischer-Romero C., Tindall B. J., Jüttiner F. 1996; Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol 46:183–188 [CrossRef]
    [Google Scholar]
  7. Harf-Monteil C., Le Flèche A., Riegel P., Prévost G., Bermond D., Grimont P. A. D., Monteil H. 2004; Aeromonas simiae sp. nov., isolated from monkey faeces. Int J Syst Evol Microbiol 54:481–485 [CrossRef]
    [Google Scholar]
  8. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Bergey's Manual of Determinative Bacteriology , 9th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Huys G., Vancanneyt M., Coopman R., Janssen P., Falsen E., Altwegg M., Kersters K. 1994; Cellular fatty acid composition as chemotaxonomic marker for the differentiation of phenospecies and hybridization groups in the genus Aeromonas . Int J Syst Bacteriol 44:651–658 [CrossRef]
    [Google Scholar]
  10. Huys G., Kämpfer P., Altwegg M. 7 other authors 1997; Aeromonas popoffii sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs. Int J Syst Bacteriol 47:1165–1171 [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Kasuga I., Nakajima F., Furumai H. 2003; Analysis of dissolved organic matter and bacterial community in degradation of algal bloom by EEMS and PCR-DGGE. J Jpn Soc Water Environ 26:171–174 (in Japanese [CrossRef]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  14. Miñana-Galbis D., Farfán M., Fusté C., Lorén J. G. 2004; Aeromonas molluscorum sp. nov., isolated from bivalve molluscs. Int J Syst Evol Microbiol 54:2073–2078 [CrossRef]
    [Google Scholar]
  15. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp  21–41 Edited by Gerhard P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Pandey K. K., Mayilraj S., Chakrabarti T. 2002; Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52:1559–1567 [CrossRef]
    [Google Scholar]
  17. Popoff M. 1984; Genus III Aeromonas Kluvyer and Van Niel 1936, 398AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  545–548 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeast. Appl Environ Microbiol 61:3756–3758
    [Google Scholar]
  19. Romanenko L. A., Schumann P., Zhukova N. V., Rohde M., Mikhailov V. V., Stackebrandt E. 2003; Oceanisphaera litoralis gen. nov. sp. nov. a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53:1885–1888 [CrossRef]
    [Google Scholar]
  20. Saha P., Krishnamurthi S., Mayilraj S., Prasad G. S., Bora T. C., Chakrabarti T. 2005; Aquimonas voraii gen. nov., sp. nov., a novel gammaproteobacterium isolated from a warm spring of Assam, India. Int J Syst Evol Microbiol 55:1491–1495 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63972-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63972-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed