1887

Abstract

Three strains (so36, so42 and wo26) representing a novel Gram-negative, obligately aerobic, bacteriochlorophyll -containing species of the -4 subgroup of the were isolated from freshwater lakes using a high-throughput cultivation technique. The non-motile and slender rod-shaped cells formed orange–red-pigmented colonies. The main carotenoids were nostoxanthin and keto-nostoxanthin. According to the absorption spectrum, two different photosynthetic light-harvesting complexes, an LHI complex and a B800-830-type peripheral LHII complex, were present in the cells. The predominant fatty acids of strain so42 were hexadecenoic acid (16 : 17) and octadecenoic acid (18 : 17), whereas 17 : 16 and 14 : 0 iso 2-OH were present in smaller amounts. The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, glycolipid and sphingoglycolipids. The major respiratory lipoquinone was ubiquinone-10, whereas ubiquinone-9 was present in smaller amounts. The three strains were cytochrome oxidase-negative and catalase-positive and formed alkaline and acid phosphatases. The strains grew chemoorganoheterotrophically in mineral media supplemented with various organic acids, amino acids or complex substrates such as peptone and yeast extract. The G+C content of the genomic DNA of strain so42 was 64·3 mol%. The three novel isolates contained the same 16S rRNA gene sequence. The 16S rRNA gene sequence similarity to the closest phylogenetic relative was only 92·8 %. Accordingly, the three strains represent a new genus and species, for which the name gen. nov., sp. nov., is proposed, with strain so42 (=DSM 17366=CECT 7086) as the designated type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63970-0
2006-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/4/847.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63970-0&mimeType=html&fmt=ahah

References

  1. Airs R. L., Atkinson J. E., Keely B. J. 2001; Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917:167–177 [CrossRef]
    [Google Scholar]
  2. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I. 2003; Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Bartscht K., Cypionka H., Overmann J. 1999; Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol Ecol 28:249–259 [CrossRef]
    [Google Scholar]
  5. Béjà O., Suzuki M. T., Heidelberg J. F., Nelson W. C., Preston C. M., Hamada T., Eisen J. A., Fraser C. M., DeLong E. F. 2002; Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633 [CrossRef]
    [Google Scholar]
  6. Bruns A., Hoffelner H., Overmann J. 2003; A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 45:161–171 [CrossRef]
    [Google Scholar]
  7. Chróst R. J. 1991; Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Microbial Enzymes in Aquatic Environments pp  26–29 Edited by Chróst R. J. New York: Springer;
    [Google Scholar]
  8. de Bruijn F. J. 1992; Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitve intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187
    [Google Scholar]
  9. de la Torre J. R., Goebel B. M., Friedmann E. I., Pace N. R. 2003; Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867 [CrossRef]
    [Google Scholar]
  10. Denner E. B. M., Vybiral D., Koblížek M., Kämpfer P., Busse H.-J., Velimirov B. 2002; Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a , isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52:1655–1661 [CrossRef]
    [Google Scholar]
  11. Gerhardt P. (editor) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Gich F., Schubert K., Bruns A., Hoffelner H., Overmann J. 2005; Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 71:5908–5919 [CrossRef]
    [Google Scholar]
  13. Kolber Z. S., Van Dover C. L., Niederman R. A., Falkowski P. G. 2000; Bacterial photosynthesis in surface water of the open ocean. Nature 407:177–179 [CrossRef]
    [Google Scholar]
  14. Kolber Z. S., Plumley F. G., Lang A. S. 7 other authors 2001; Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 [CrossRef]
    [Google Scholar]
  15. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  16. Labrenz M., Lawson P. A., Tindall B. J., Collins M. D., Hirsch P. 2005; Roseisalinus antarcticus gen. nov., sp. nov. a novel aerobic bacteriochlorophyll a -producing α -proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47 [CrossRef]
    [Google Scholar]
  17. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R. 28 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  21. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987
    [Google Scholar]
  22. Page K. A., Connon S. A., Giovannoni S. 2004; Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl Environ Microbiol 70:6542–6550 [CrossRef]
    [Google Scholar]
  23. Rainey F. A., Silva J., Nobre M. F., Silva M. T., da Costa M. S. 2003; Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a -containing species. Int J Syst Evol Microbiol 53:35–41 [CrossRef]
    [Google Scholar]
  24. Rivas R., Abril A., Trujillo M. E., Velázquez E. 2004; Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 54:2147–2150 [CrossRef]
    [Google Scholar]
  25. Shiba T., Shioi Y., Takamiya K., Sutton D. C., Wilkinson C. R. 1991; Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Appl Environ Microbiol 57:295–300
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  28. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Yoon J.-H., Kim H., Kim I.-G., Kang K. H., Park Y.-H. 2003; Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53:1169–1174 [CrossRef]
    [Google Scholar]
  30. Yoon J.-H., Lee M.-H., Oh T.-K. 2004; Porphyrobacter doghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54:2231–2235 [CrossRef]
    [Google Scholar]
  31. Yurkov V. V. 2001 Aerobic phototrophic bacteria. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community , 3rd edn. release 3.5, 13 March 2001 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  32. Yurkov V. V., Beatty J. T. 1998; Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724
    [Google Scholar]
  33. Yurkov V. V., Gorlenko V. M. 1990; Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a . Microbiology (English translation of Mikrobiologiia ) 5985–89
    [Google Scholar]
  34. Yurkov V., Stackebrandt E., Buss O., Vermeglio A., Gorlenko V., Beatty J. T. 1997; Reorganization of the genus Erythromicrobium : description of “ Erythromicrobium sibiricum ” as Sandaracinobacter sibiricus gen.nov., sp. nov., and of “ Erythromicrobium ursincola ” as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63970-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63970-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error