1887

Abstract

An isolate of purple non-sulfur bacteria was obtained from an acidic peat bog and designated strain RS. The colour of cell suspensions of this bacterium growing in the light under anaerobic conditions is purplish red. Cells of strain RS are rod-shaped, 0.8–1.0 μm wide and 2.0–6.0 μm long, motile by means of polar flagella, reproduce by budding and have a tendency to form rosette-like clusters in older cultures. The cells contain lamellar intracytoplasmic membranes underlying, and parallel to, the cytoplasmic membrane. The photosynthetic pigments are bacteriochlorophyll and carotenoids; the absorption spectrum of living cells shows maxima at 377, 463, 492, 527, 592, 806 and 867 nm. The cells grow photoheterotrophically under anaerobic or microaerobic conditions with various organic carbon sources or grow photolithoautotrophically with H and CO. Strain RS is a moderately acidophilic organism exhibiting growth at pH values between 4.8 and 7.0 (with an optimum at pH 5.2–5.5). The major fatty acids are 16 : 17 and 18 : 17; the major quinones are Q-10 and Q-9. The DNA G+C content of strain RS is 62.6 mol%. Analysis of the 16S rRNA gene sequence revealed that the novel isolate is most closely related (97.3 % sequence similarity) to the type strain ATCC 25092 of the moderately acidophilic purple non-sulfur bacterium , formerly named . However, in contrast to , strain RS is not capable of aerobic growth in the dark, has no spirilloxanthin among the carotenoids and differs in the pattern of substrate utilization. The value for DNA–DNA hybridization between strain RS and ATCC 25092 is only 22 %. Thus, strain RS represents a novel species of the genus , for which the name sp. nov. is proposed. Strain RS (=DSM 16996=VKM B-2361) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63962-0
2006-06-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1397.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63962-0&mimeType=html&fmt=ahah

References

  1. Burke M. E., Corham E., Pratt D. C. 1974; Distribution of purple photosynthetic bacteria in wetland and woodland habitats of central and northern Minnesota. J Bacteriol 117:826–833
    [Google Scholar]
  2. Davies B. H. 1976; Carotenoids. In Chemistry and Biochemistry of Plant Pigments . , 2nd edn. pp  38–160 Edited by Goodwin T. W. London: Academic Press;
  3. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. 2000; Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969 [CrossRef]
    [Google Scholar]
  4. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261
    [Google Scholar]
  5. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A. 2004; Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156 [CrossRef]
    [Google Scholar]
  6. Dedysh S. N., Smirnova K. V., Chmelenina V. N., Suzina N. E., Liesack W., Trotsenko Y. A. 2005; Methylotrophic autotrophy in Beijerinckia mobilis . J Bacteriol 187:3884–3888 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Heinemeyer E.-A., Schmidt K. 1983; Changes in carotenoid biosynthesis caused by variations of growth condition in cultures of Rhodopseudomonas acidophila strain 7050. Arch Mikrobiol 134:217–221
    [Google Scholar]
  9. Imhoff J. F. 2001a The phototrophic alpha-Proteobacteria. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn. release 3.6 22 June 2001 Edited by Dworkin M. others New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  10. Imhoff J. F. 2001b; Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1863–1866 [CrossRef]
    [Google Scholar]
  11. Imhoff J. F., Trüper H. G. 1992; The genus Rhodospirillum and related genera. In The Prokaryotes , 2nd edn. pp  2141–2155 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  12. Kawasaki H., Hoshinoi Y., Yamasato K. 1993; Phylogenetic diversity of phototrophic purple non-sulfur bacteria in the Proteobacteria alpha-group. FEMS Microbiol Lett 112:61–66
    [Google Scholar]
  13. Ludwig W. O., Strunk R., Westram L. 29 other authors; 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  14. Mandel M., Leadbetter E. R., Pfennig N., Trüper H. G. 1971; Deoxyribonucleic acid base compositions of phototrophic bacteria. Int J Syst Bacteriol 21:222–230 [CrossRef]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  16. Owen R. J., Lapage S. P., Hill L. R. 1969; Determination of base composition from melting profiles in dilute buffers. Biopolymers 7:503–516 [CrossRef]
    [Google Scholar]
  17. Pfennig N. 1969; Rhodopseudomonas acidophila , sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99:597–602
    [Google Scholar]
  18. Pfennig N., Lippert K. D. 1966; über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:258–266 (in German
    [Google Scholar]
  19. Pratt D. C., Gorham E. 1970; Occurrence of Athiorhodaceae in woodland, swamp, and pond soils. Ecology 51:346–349 [CrossRef]
    [Google Scholar]
  20. Schmidt K. 1971; Carotenoids of purple nonsulfur bacteria. Arch Mikrobiol 77:231–238 [CrossRef]
    [Google Scholar]
  21. Sidorova T. N., Makhneva Z. K., Puchkova N. N., Gorlenko V. M., Moskalenko A. A. 1998; Characteristics of photosynthetic apparatus of Thiocapsa strain BM3 containing okenone as the main carotenoid. Microbiology (English translation of Mikrobiologiia ) 67:199–206
    [Google Scholar]
  22. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38:321–325 [CrossRef]
    [Google Scholar]
  23. Toropygina O. A., Makhneva Z. K., Moskalenko A. A. 2003; Reconstitution of carotenoids into the light-harvesting complex B800–850 of Chromatium minutissimum . Biochemistry (English translation of Biokhimiia ) 68901–911
    [Google Scholar]
  24. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  25. Woese C. R., Stackebrandt E., Weisburg W. G. 8 other authors 1984; The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326 [CrossRef]
    [Google Scholar]
  26. Wolin E. A., Wolin M. G., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63962-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63962-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error