1887

Abstract

Alignment-independent phylogenetic methods have interesting properties for global phylogenetic reconstructions, particularly with respect to speed and accuracy. Here, we present a novel multimer-based alignment-independent bilinear mathematical modelling (AIBIMM) approach for global 16S rRNA gene phylogenetic analyses. In AIBIMM, jackknife cross-validated principal component analyses (PCA) are used to explain the variance in nucleotide -mer frequency data. We compared AIBIMM with alignment-based distance, maximum-parsimony and maximum-likelihood phylogenetic methods, analysing taxa belonging to the (=82), (=30) and (=7). These analyses indicated an attraction between the and for the traditional methods, with the two taxa and at the root of the tree. AIBIMM, on the other hand, showed that the was tightly clustered, with and within a distinct subgroup of the . The application of AIBIMM was further evaluated, analysing full-length 16S rRNA gene sequences for 2818 taxa representing the prokaryotic domains. We obtained a highly structured description of the prokaryote diversity. Sample-to-model (Si) distances were also determined for taxa included in our work. We determined Si distances for models of the six major subgroups of taxa detected in the global analyses, in addition to nested subgroups within the . The Si-distance evaluation showed a very good separation of the taxa within the models from those outside. We conclude that AIBIMM represents a novel phylogenetic framework suitable for accommodating the current exponential growth of 16S rRNA gene sequences in the public domain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63936-0
2006-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63936-0&mimeType=html&fmt=ahah

References

  1. Acinas, S. G., Klepac-Ceraj, V., Hunt, D. E., Pharino, C., Ceraj, I., Distel, D. L. & Polz, M. F. ( 2004; ). Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430, 551–554.[CrossRef]
    [Google Scholar]
  2. Brochier, C. & Philippe, H. ( 2002; ). Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417, 244.[CrossRef]
    [Google Scholar]
  3. Curtis, T. P. & Sloan, W. T. ( 2004; ). Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7, 221–226.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  5. Fisher, R. A. & MacKenzie, W. A. ( 1923; ). Studies in crop variation. II. The manurial response of different potato varieties. J Agric Sci 13, 311–320.[CrossRef]
    [Google Scholar]
  6. Garrity, G. M., Bell, J. A. & Lilburn, T. G. ( 2003; ). Taxonomic outline of the prokaryotes, release 4. In Bergey's Manual of Systematic Bacteriology, 2nd edn. New York: Springer. doi:10.1007/bergeysoutline
  7. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  8. Hillis, D. M. & Huelsenbeck, J. P. ( 1992; ). Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83, 189–195.
    [Google Scholar]
  9. Holder, M. & Lewis, P. O. ( 2003; ). Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet 4, 275–284.[CrossRef]
    [Google Scholar]
  10. Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. ( 2001; ). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314.[CrossRef]
    [Google Scholar]
  11. Kolaczkowski, B. & Thornton, J. W. ( 2004; ). Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980–984.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K., Jakobsen, I.-B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  13. Kvaal, K., Wold, J. P., Indahl, U. G., Baardseth, P. & Næs, T. ( 1998; ). Multivariate feature extraction from textural images of bread. Chemometrics Intell Lab Syst 42, 141–158.[CrossRef]
    [Google Scholar]
  14. Ludwig, W. & Schleifer, K.-H. ( 1999; ). Phylogeny of bacteria beyond the 16S rRNA standard. ASM News 65, 752–757.
    [Google Scholar]
  15. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K. H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef]
    [Google Scholar]
  16. Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J. & Woese, C. R. ( 1997; ). The RDP (Ribosomal Database Project). Nucleic Acids Res 25, 109–111.[CrossRef]
    [Google Scholar]
  17. Mardia, K. V., Kent, J. T. & Bibby, J. M. ( 1979; ). Multivariate Analysis. London: Academic Press.
  18. Martens, H. & Næs, T. ( 1989; ). Multivariate Calibration. Chichester: Wiley.
  19. Stackebrandt, E. & Goebel, B. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  20. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  21. Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M. D. & Dore, J. ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 4799–4807.
    [Google Scholar]
  22. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  23. Vinga, S. & Almeida, J. ( 2002; ). Alignment-free sequence comparison – a review. Bioinformatics 19, 513–523.
    [Google Scholar]
  24. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  25. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  26. Wold, S. ( 1976; ). Pattern recognition by means of disjoint principal component models. Pattern Recognit 8, 127–139.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63936-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63936-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error