1887

Abstract

A non-pigmented, motile, Gram-negative bacterium designated MTCC 4195 was isolated from surface-sterilized seeds and plant tissue from deep-water rice () cultivated in Suraha Tal Lake in northern India. This isolate was shown to reinfect and colonize deep-water rice endophytically. The highest level of 16S rRNA sequence similarity (96.8 %) to strain MTCC 4195 was shown by DSM 15295. Strain MTCC 4195 utilized -hydroxybutyric acid, adonitol, -glucosaminic acid and arabinose as carbon sources, but failed to use gentiobiose or citrate. The cell-wall fatty acids of strain MTCC 4195 were characterized by the presence of a relatively large proportion of C 7 and a relative small proportion of C in comparison with species. DNA–DNA relatedness studies showed less than 52 % binding with the DNAs of type strains of other species of the genus . On the basis of phenotypic and genotypic characteristics and the results of 16S rRNA gene sequence analysis, the novel species sp. nov. is proposed, with MTCC 4195 (=DSM 17471) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63934-0
2006-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1677.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63934-0&mimeType=html&fmt=ahah

References

  1. Albrecht, S. L. & Okon, Y. ( 1980; ). Culture of Azospirillum. Methods Enzymol 69, 740–749.
    [Google Scholar]
  2. Barraquio, W. L., Revilla, L. & Ladha, J. K. ( 1997; ). Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194, 15–24.[CrossRef]
    [Google Scholar]
  3. Christensen, H., Bisgaard, M., Frederiksen, W., Mutters, R., Kuhnert, P. & Olsen, J. E. ( 2001; ). Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol 51, 2221–2225.[CrossRef]
    [Google Scholar]
  4. Cocking, E. C. ( 2003; ). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252, 169–175.[CrossRef]
    [Google Scholar]
  5. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  6. Gattinger, A., Schloter, M. & Munch, J. C. ( 2002; ). Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling. FEMS Microbiol Lett 213, 133–139.[CrossRef]
    [Google Scholar]
  7. Gillings, M. & Holley, M. ( 1997; ). Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol 25, 17–21.[CrossRef]
    [Google Scholar]
  8. Heyndrickx, M., Vauterin, L., Vandamme, P., Kersters, K. & De Vos, P. ( 1996; ). Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbiol Methods 26, 247–259.[CrossRef]
    [Google Scholar]
  9. Kämpfer, P., Buczolits, S., Albrecht, A., Busse, H. J. & Stackebrandt, E. ( 2003; ). Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53, 893–896.[CrossRef]
    [Google Scholar]
  10. Lebuhn, M., Achouak, W., Schloter, M., Berge, O., Meier, H., Barakat, M., Hartmann, A. & Heulin, T. ( 2000; ). Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50, 2207–2223.[CrossRef]
    [Google Scholar]
  11. Ngom, A., Nakagawa, Y., Sawada, H. & 8 other authors ( 2004; ). A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50, 17–27.[CrossRef]
    [Google Scholar]
  12. Trujillo, M. E., Willems, A., Abril, A., Planchuelo, A. M., Rivas, R., Ludena, D., Mateos, P. F., Martinez-Molina, E. & Velazquez, E. ( 2005; ). Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71, 1318–1327.[CrossRef]
    [Google Scholar]
  13. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995; ). Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177, 1414–1417.
    [Google Scholar]
  14. Verma, S. C., Ladha, J. K. & Tripathi, A. K. ( 2001; ). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 90, 127–141.
    [Google Scholar]
  15. Verma, S. C., Singh, A., Chowdhury, S. P. & Tripathi, A. K. ( 2004; ). Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26, 425–429.[CrossRef]
    [Google Scholar]
  16. Versalovic, J., Schneider, M., de Bruijn, F. J. & Lupski, J. R. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol Cell Biol 5, 25–40.
    [Google Scholar]
  17. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63934-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63934-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error