1887

Abstract

Two novel species belonging to the genus are described on the basis of their phenotypic characteristics, phylogenetic analyses of 16S rRNA and gene sequences and levels of DNA–DNA hybridization. A total of 47 strains belonging to two novel Gram-negative, psychrotolerant, HS-producing bacterial species were isolated from marine fish (cod and flounder) caught from the Baltic Sea off Denmark. The phenotypic characteristics of strains belonging to group 1 (14 strains) indicated that these represented a non-sucrose-assimilating variant of with a DNA G+C content of 47·0 mol%. Strains of group 2 (33 isolates) did not utilize the carbon substrates assimilated by except gluconate, -acetylglucosamine and malate. Their DNA G+C content was 44·0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence data placed the two novel species within the genus . Group 1 strains showed greatest sequence similarity to ATCC 8071 (99·0 %) and with NCTC 10375 (98·3 %). However, gene sequence analysis showed these isolates to share only 90·0 % sequence similarity with ATCC 8071 and 93·9 % with NCTC 10375. Similarly, DNA–DNA hybridization experiments revealed DNA relatedness levels of 38 % between the group 1 isolates and ATCC 8071 and 43 % with NCTC 10375. The group 2 strains shared less than 97 % 16S rRNA gene sequence similarities with recognized species. Comparisons between the two novel species indicated 16S rRNA gene sequence similarity of ∼98 %, gene sequence similarity of ∼89 % and DNA–DNA reassociation values of 20–34 %. Based on the evidence presented, two novel species, sp. nov. (type strain P010=ATCC BAA-1207=NBRC 100975) and sp. nov. (type strain U1417=ATCC BAA-1205=NBRC 100978), are described.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63931-0
2006-01-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/1/243.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63931-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. Bowman, J. P., McCammon, S. A., Nichols, D. S., Skerratt, J. H., Rea, S. M., Nichols, P. D. & McMeekin, T. A.(1997).Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47, 1040–1047.[CrossRef] [Google Scholar]
  3. Bozal, N., Montes, M. J., Tudela, E., Jimenez, F. & Guinea, J.(2002).Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52, 195–205. [Google Scholar]
  4. Brettar, I., Christen, R. & Hofle, M. G.(2002).Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic–anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol 52, 2211–2217.[CrossRef] [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  6. Fonnesbech Vogel, B., Jorgensen, K., Christensen, H., Olsen, J. E. & Gram, L.(1997). Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis. Appl Environ Microbiol 63, 2189–2199. [Google Scholar]
  7. Fonnesbech Vogel, B., Venkateswaran, K., Satomi, M. & Gram, L.(2005). Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish. Appl Environ Microbiol 71, 6689–6697.[CrossRef] [Google Scholar]
  8. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr(1992). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef] [Google Scholar]
  9. Frazier, W. C.(1926). A method for the detection of changes in gelatin due to bacteria. J Infect Dis 39, 302–306.[CrossRef] [Google Scholar]
  10. Gram, L., Trolle, G. & Huss, H. H.(1987). Detection of specific spoilage bacteria from fish stored at low (0 °C) and high (20 °C) temperatures. Int J Food Microbiol 4, 65–72.[CrossRef] [Google Scholar]
  11. Gregerson, T.(1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef] [Google Scholar]
  12. Johnson, J. L.(1981). Genetic characterization. In Manual of Methods for General Bacteriology, pp. 450–472. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  13. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  14. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  15. Sambrook, J., Fritsch, E. L. & Maniatis, T.(1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Satomi, M., Kimura, B., Mizoi, M., Sato, T. & Fujii, T.(1997).Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47, 832–836.[CrossRef] [Google Scholar]
  17. Satomi, M., Kimura, B., Hamada, T., Harayama, S. & Fujii, T.(2002). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52, 739–747.[CrossRef] [Google Scholar]
  18. Satomi, M., Oikawa, H. & Yano, Y.(2003).Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53, 491–499.[CrossRef] [Google Scholar]
  19. Satomi, M., Kimura, B., Hayashi, M., Okuzumi, M. & Fujii, T.(2004).Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy. Int J Syst Evol Microbiol 54, 163–167.[CrossRef] [Google Scholar]
  20. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  21. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  22. Venkateswaran, K., Dohmoto, N. & Harayama, S.(1998). Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol 64, 681–687. [Google Scholar]
  23. Venkateswaran, K., Moser, D. P., Dollhopf, M. E. & 10 other authors(1999). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49, 705–724.[CrossRef] [Google Scholar]
  24. Wayne, L. G.(1988). International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Zentralbl Bakteriol Mikrobiol Hyg A 268, 433–434. [Google Scholar]
  25. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
  26. Woese, C. R.(1987). Bacterial evolution. Microbiol Rev 51, 221–271. [Google Scholar]
  27. Yamamoto, S. & Harayama, S.(1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109. [Google Scholar]
  28. Yamamoto, S. & Harayama, S.(1998). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48, 813–819.[CrossRef] [Google Scholar]
  29. Yamamoto, S., Bouvet, P. J. & Harayama, S.(1999). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49, 87–95.[CrossRef] [Google Scholar]
  30. Ziemke, F., Brettar, I. & Hofle, M. G.(1997). Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13, 63–74.[CrossRef] [Google Scholar]
  31. Ziemke, F., Hofle, M. G., Lalucat, J. & Rossello-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63931-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63931-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error