1887

Abstract

A Gram-negative, rod-shaped, non-motile, non-spore-forming, pink-pigmented bacterium, SV97, was isolated from a wetland soil near Ny-Ålesund, Svalbard Islands, Norway (78° N). On the basis of 16S rRNA gene sequence similarity, strain SV97 was shown to belong to the and was highly related to a number of non-characterized strains with GenBank accession nos AJ458507 and AJ458502 (100 %) and AF177299, AJ458510, AJ458467, AJ458471, AJ431384, AJ458475, AJ458484, AJ458501 and AJ458466 (99 %). The most closely related type strains were OBBP (97·2 %) and IMET 10491 (97 %). The closest related recognized species within the genus was NCIMB 11126 (96·0 % similarity). Chemotaxonomic and phenotypic data (C 8 as the major fatty acid, non-motile, no rosette formation) supported the affiliation of strain SV97 to the genus . The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV97 from the two recognized species. Strain SV97 therefore represents a novel species, for which the name sp. nov. is proposed, with the type strain SV97 (=DSM 17261=ATCC BAA-1196).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63912-0
2006-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/3/541.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63912-0&mimeType=html&fmt=ahah

References

  1. Auman A. J., Speake C. C., Lidstrom M. E. 2001; nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016 [CrossRef]
    [Google Scholar]
  2. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  3. Brusseau G. A., Tsien H. C., Hanson R. S., Wackett L. P. 1990; Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1:19–29 [CrossRef]
    [Google Scholar]
  4. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. 2000; Methylocella palustris gen. nov., sp. nov. a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969 [CrossRef]
    [Google Scholar]
  5. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov., sp. nov. a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261
    [Google Scholar]
  6. Dunfield P. F., Yimga M. T., Dedysh S. N., Berger U., Liesack W., Heyer J. 2002; Isolation of a Methylocystis strain containing a novel pmoA -like gene. FEMS Microbiol Ecol 41:17–26 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorimetric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1993 phylip – phylogenetic interference package, version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  9. Fuse H., Ohta M., Takimura O., Murakami K., Inoue H., Yamaoka Y., Oclarit J. M., Omori T. 1998; Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62:1925–1931 [CrossRef]
    [Google Scholar]
  10. Galchenko V. F., Shiskina V. N., Suzina N. E., Trotsenko Y. A. 1977; Isolation and properties of new strains of obligate methanotrophs. Mikrobiologiia 46:723–728
    [Google Scholar]
  11. Gerhardt P. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Graham D. W., Korich D. G., LeBlanc R. P., Sinclair N. A., Arnold R. G. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236
    [Google Scholar]
  13. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  14. Heyer J., Galchenko V. F., Dunfield P. F. 2002; Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148:2831–2846
    [Google Scholar]
  15. Høj L., Olsen R. A., Torsvik V. L. 2005; Archaeal communities in high Arctic wetlands at Spitsbergen, Norway (78° N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53:89–101 [CrossRef]
    [Google Scholar]
  16. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. (editors) 1992 International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  18. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr, Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338
    [Google Scholar]
  19. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D. 1997; Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR. Microb Ecol 33:21–31 [CrossRef]
    [Google Scholar]
  20. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  21. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Vela G. R., Wyss O. 1964; Improved stain for visualization of Azotobacter encystment. J Bacteriol 87:476–477
    [Google Scholar]
  24. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  25. Wise M. G., McArthur J. V., Shimkets L. J. 1999; Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63912-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63912-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error