1887

Abstract

Strain B33 is a moderately halophilic, exopolysaccharide-producing, Gram-negative, non-motile rod isolated from a hypersaline soil bordering a saline saltern on the Mediterranean seaboard in Murcia (Spain). The bacterium is chemoheterotrophic and strictly aerobic. It contains a pink pigment but does not synthesize bacteriochlorophyll . It requires 0·66 M Na, 0·1 M Mg and 0·1 M K for optimum growth. It does not produce acid from carbohydrates. It cannot grow with carbohydrates, organic acids, sugars, alcohols or amino acids as sole sources of carbon and energy. Its major fatty-acids are 18 : 17 (68·9 %) and 19 : 0 cyclo 8 (12·8 %). The sole respiratory lipoquinone found in strain B33 is ubiquinone-10. The DNA G+C content is 64·2 mol%. 16S rRNA gene sequence comparisons show that the isolate is a member of the clade within the class ‘’. The similarity values with and are 88·2 and 88·0 % respectively and 92·2 % with . DNA–DNA hybridization values with these species are <30 %. In the light of the polyphasic evidence gathered in this study it is proposed that the isolate be classified as a novel genus and species with the name gen. nov., sp. nov. The proposed type strain is strain B33 (=CECT 7066=LMG 22959).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63906-0
2005-11-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2525.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63906-0&mimeType=html&fmt=ahah

References

  1. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I. 2003; Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059 [CrossRef]
    [Google Scholar]
  2. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  4. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68 [CrossRef]
    [Google Scholar]
  5. Ferragut C., Leclerc H. 1976; Etude comparative des methodes de determination du T m de l'ADN bacterien. Ann Microbiol 127:223–235 (in French
    [Google Scholar]
  6. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey ' s Manual of Systematic Bacteriology . , 2nd edn. vol 1 pp  119–166 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
  7. González J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242
    [Google Scholar]
  8. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  9. Kushner D. J., Kamekura M. 1988; Physiology of halophilic bacteria. In Halophilic Bacteria pp  109–138 Edited by Rodríguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  10. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola , Erwinia milletiae ) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand [B] 94:205–213
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–212 [CrossRef]
    [Google Scholar]
  12. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  13. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E. 2004a; Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland, wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54:1329–1332 [CrossRef]
    [Google Scholar]
  14. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Páez R., Quesada E. 2004b; Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov. isolated from inland hypersaline habitats in Spain. Int J Syst Evol Microbiol 54:1793–1797 [CrossRef]
    [Google Scholar]
  15. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004c; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [CrossRef]
    [Google Scholar]
  16. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., Béjar V. 2004d; A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48:348–353 [CrossRef]
    [Google Scholar]
  17. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., del Moral A., Béjar V. 2004e; Salipiger mucescens gen. nov., sp. nov. a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α-Proteobacteria . Int J Syst Evol Microbiol 54:1735–1740 [CrossRef]
    [Google Scholar]
  18. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E. 2005a; Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55:2007–2011 [CrossRef]
    [Google Scholar]
  19. Martínez-Checa F., Béjar V., Llamas I., del Moral A., Quesada E. 2005b; Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 55:2385–2390 [CrossRef]
    [Google Scholar]
  20. Mata J. A., Martínez-Cánovas M. J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  21. Moraine R. A., Rogovin P. 1966; Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8:511–524 [CrossRef]
    [Google Scholar]
  22. Nishimura Y., Muroga Y., Saito S., Shiba T., Takamiya K., Shioi Y. 1994; DNA relatedness and chemotaxonomic feature of aerobic bacteriochlorophyll-containing bacteria isolated from coasts of Australia. J Gen Appl Microbiol 40:287–296 [CrossRef]
    [Google Scholar]
  23. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp  277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  24. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics pp  67–93 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  25. Quesada E., Ventosa A., Rodríguez-Valera F., Megías L., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657
    [Google Scholar]
  26. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov. a moderately halophilic non-motile Gram-negative rod. Int J Syst Bacteriol 40:261–267 [CrossRef]
    [Google Scholar]
  27. Quesada E., Béjar V., Ferrer M. R. 8 other authors 2004; Moderately halophilic, exopolysaccharide-producing bacteria. In Halophilic Microorganisms pp  297–314 Edited by Ventosa A. Heidelberg: Springer;
    [Google Scholar]
  28. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  29. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  30. Sutherland I. W. 1990 Biotechnology of Microbial Exopolysaccharides Cambridge: Cambridge University Press;
    [Google Scholar]
  31. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 1999; Roseivivax halodurans gen. nov., sp. nov., and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49:629–634 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak K., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  34. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  35. Ziemke F., Hofle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63906-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63906-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error