A strictly anaerobic, propionate-producing bacterial strain (WB4) isolated from rice plant residue in anoxic rice-field soil in Japan was characterized phenotypically and phylogenetically. Cells were Gram-negative, non-motile, non-spore-forming, short rods. The strain utilized various sugars and produced propionate and acetate as major fermentation products with a small amount of succinate. The optimum growth temperature was 30 °C. Oxidase, catalase and nitrate-reducing activities were negative. The major cellular fatty acids were anteiso-C, C and anteiso-C 3-OH. Menaquinone MK-8(H) was the major respiratory quinone. The genomic DNA G+C content was 39·3 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence placed the strain in the phylum ‘’. The closest relative to strain WB4 was an environmental clone from water contaminated with equine manure (sequence similarity of 99·7 %) and the strain formed a distinct cluster with other environmental clones mainly from freshwater sediments. The closest recognized species were members of the genus , with 16S rRNA gene sequence similarities of 90·9–89·8 %. was the next closest recognized species (similarity of 88·7 % to the type strain). Given that the ecological, physiological and chemotaxonomic characteristics of strain WB4 were different from those of any related species, a new genus and species gen. nov., sp. nov., is proposed to accommodate it. The type strain is WB4 (=JCM 13257=DSM 17365).


Article metrics loading...

Loading full text...

Full text loading...



  1. Akasaka, H., Izawa, T., Ueki, K. & Ueki, A.(2003a). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43, 149–161.[CrossRef] [Google Scholar]
  2. Akasaka, H., Ueki, A., Hanada, S., Kamagata, Y. & Ueki, K.(2003b).Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 53, 1991–1998.[CrossRef] [Google Scholar]
  3. Akasaka, H., Ueki, K. & Ueki, A.(2004). Effects of plant residue extract and cobalamin on growth and propionate production of Propionicimonas paludicola isolated from plant residue in irrigated rice field soil. Microbes Environ 19, 112–119.[CrossRef] [Google Scholar]
  4. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  5. Boone, D. R.(2000). Biological formation and consumption of methane. In Atmospheric Methane, pp. 42–62. Edited by M. A. K. Khalil. Berlin: Springer.
  6. Cicerone, R. J. & Oremland, R. S.(1988). Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycles 2, 299–327.[CrossRef] [Google Scholar]
  7. Garrity, G. M. & Holt, J. G.(2001). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  8. Glissmann, K. & Conrad, R.(2000). Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 31, 117–126.[CrossRef] [Google Scholar]
  9. Großkopf, R., Stubner, S. & Liesack, W.(1998). Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64, 4983–4989. [Google Scholar]
  10. Harris, J. K., Kelley, S. T. & Pace, N. R.(2004). New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70, 845–849.[CrossRef] [Google Scholar]
  11. Henckel, T., Friedrich, M. & Conrad, R.(1999). Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65, 1980–1990. [Google Scholar]
  12. Hengstmann, U., Chin, K.-J., Janssen, P. H. & Liesack, W.(1999). Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 65, 5050–5058. [Google Scholar]
  13. Hofstad, T., Olsen, I., Eribe, E. R., Falsen, E., Collins, M. D. & Lawson, P. A.(2000).Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int J Syst Evol Microbiol 50, 2189–2195.[CrossRef] [Google Scholar]
  14. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute & State University.
  15. Holdeman, L. V., Kelly, R. W. & Moore, W. E. C.(1984). Genus I. Bacteroides Castellani and Chalmers 1919, 959. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 604–631. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  16. Hungate, R. E.(1966).The Rumen and its Microbes. New York: Academic Press.
  17. Janssen, P. H., Schuhmann, A., Mörschel, E. & Rainey, F. A.(1997). Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63, 1382–1388. [Google Scholar]
  18. Johnson, J. L., Moore, W. E. C. & Moore, L. V. H.(1986).Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol 36, 499–501.[CrossRef] [Google Scholar]
  19. Kamagata, Y. & Mikami, E.(1991). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef] [Google Scholar]
  20. Khalil, M. A. K. (editor)(2000).Atmospheric Methane. Berlin: Springer.
  21. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  22. Lawson, P. A., Falsen, E., Inganas, E., Weyant, R. S. & Collins, M. D.(2002).Dysgonomonas mossii sp. nov., from human sources. Syst Appl Microbiol 25, 194–197.[CrossRef] [Google Scholar]
  23. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  24. Miyagawa, E., Azuma, R. & Suto, E.(1979). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25, 41–51.[CrossRef] [Google Scholar]
  25. Moissl, C., Rudolph, C. & Huber, R.(2002). Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Appl Environ Microbiol 68, 933–937.[CrossRef] [Google Scholar]
  26. Moore, L. V. H., Bourne, D. M. & Moore, W. E. C.(1994). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol 44, 338–347.[CrossRef] [Google Scholar]
  27. Paster, B. J., Dewhirst, F. E., Olsen, I. & Fraser, G. J.(1994). Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol 176, 725–732. [Google Scholar]
  28. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  29. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y.(2002). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef] [Google Scholar]
  30. Satoh, A., Watanabe, M., Ueki, A. & Ueki, K.(2002). Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe 8, 233–246.[CrossRef] [Google Scholar]
  31. Seiler, W., Holzapfel-Pschorn, A., Conrad, R. & Scharffe, D.(1984). Methane emission from rice paddies. J Atmos Chem 1, 241–268. [Google Scholar]
  32. Simpson, J. M., Santo Domingo, J. W. & Reasoner, D. J.(2004). Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. FEMS Microbiol Ecol 47, 65–75.[CrossRef] [Google Scholar]
  33. Takai, Y.(1970). The mechanism of methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 6, 238–244. [Google Scholar]
  34. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  35. Ueki, A. & Suto, T.(1979). Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25, 185–196.[CrossRef] [Google Scholar]
  36. Ueki, A., Matsuda, K. & Ohtsuki, C.(1986). Sulfate reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32, 111–123.[CrossRef] [Google Scholar]
  37. Ueki, A., Kainuma, Y., Fujii, H. & Ueki, K.(2000). Seasonal variations in vertical distribution of methanogenic activity and Fe(II) content and relationship between them in wetland rice field soil. Soil Sci Plant Nutr 46, 401–415. [Google Scholar]
  38. Wassmann, R., Neue, H.-U., Lantin, R. S., Buendia, L. V. & Rennenberg, H.(2000a). Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutr Cycl Agroecosys 58, 1–12.[CrossRef] [Google Scholar]
  39. Wassmann, R., Neue, H. U., Lantin, R. S., Makarim, K., Chareonsilp, N., Buendia, L. V. & Rennenberg, H.(2000b). Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed, and deepwater rice. Nutr Cycl Agroecosys 58, 13–22.[CrossRef] [Google Scholar]
  40. Weber, S., Stubner, S. & Conrad, R.(2001). Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67, 1318–1327.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error