1887

Abstract

Three novel strains of methylotrophic methanogens were isolated from Skan Bay, Alaska, by using anaerobic cultivation techniques. The water was 65 m deep at the sampling site. Strains AK-4 (=OCM 774), AK-5 (=OCM 775=DSM 17273) and AK-9 (=OCM 793) were isolated from the sulfate-reducing zone of the sediments. Each of the strains was a non-motile coccus and occurred singly. Cells grew with trimethylamine as a catabolic substrate and strain AK-4 could also catabolize methanol. Yeast extract and trypticase peptones were not required for growth, but their addition to the culture medium slightly stimulated growth. Each of the strains grew at temperatures of 5–28 °C; they were slight halophiles and grew fastest in the neutral pH range. Analysis of the 16S rRNA gene sequences indicated that strain AK-4 was most closely related to . DNA–DNA hybridization studies showed 88 % relatedness, suggesting that strain AK-4 represents a novel strain within this species. Strains AK-5 and AK-9 had identical 16S rRNA gene sequences that were most closely related to the sequence of (99·8 % sequence similarity). DNA–DNA hybridization studies showed that strains AK-5 and AK-9 are members of the same species (88 % relatedness value), but strain AK-5 had a DNA–DNA relatedness value of only 55 % to . This indicates that strains AK-5 and AK-9 should be considered as members of a novel species in the genus . We propose the name sp. nov., with strain AK-5 (=OCM 775=DSM 17273) as the type strain.

Keyword(s): TMA, trimethylamine
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63886-0
2005-11-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2531.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63886-0&mimeType=html&fmt=ahah

References

  1. Barker H. A. 1936; Studies upon the methane-producing bacteria. Arch Microbiol 7:420–438
    [Google Scholar]
  2. Boone D. R., Whitman W. B., Rouvière P. E. 1993; Diversity and taxonomy of methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics pp  35–80 Edited by Ferry J. G. New York: Chapman & Hall;
    [Google Scholar]
  3. Bryant M. P., Boone D. R. 1987; Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri . Int J Syst Bacteriol 37:169–170 [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Elberson M. A., Sowers K. R. 1997; Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae . Int J Syst Bacteriol 47:1258–1261 [CrossRef]
    [Google Scholar]
  6. Fiala G., Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61 [CrossRef]
    [Google Scholar]
  7. Franzmann P. D., Springer N., Ludwig W., Conway de Macario E. C., Rohde M. 1992; A methanogenic Archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581 [CrossRef]
    [Google Scholar]
  8. Hungate R. E. 1966 The Rumen and its Microbes New York: Academic Press;
    [Google Scholar]
  9. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  10. Jarvis G. N., Strompl C., Burgess D. M., Skillman L. C., Moore E. R. B., Joblin K. N. 2000; Isolation of identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332 [CrossRef]
    [Google Scholar]
  11. Kendall M. M., Boone D. R. 2004 The Order Methanosarcinales . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community . Release 3.17 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. -H., Stackebrandt E. New York: Springer; http://link.springer-ny.com/link/service/books/10125/
    [Google Scholar]
  12. King G. M. 1984; Utilization of hydrogen, acetate, and “noncompetitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3:275–306 [CrossRef]
    [Google Scholar]
  13. King G. M., Klug M. J., Lovley D. R. 1983; Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl Environ Microbiol 45:1848–1853
    [Google Scholar]
  14. Lyimo T. J., Pol A., Op den Camp H. J. M., Harhangi H. R., Vogels G. D. 2000; Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol Microbiol 50:171–178 [CrossRef]
    [Google Scholar]
  15. Maestrojuán G. M., Boone D. R. 1991; Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T . Int J Syst Bacteriol 41:267–274 [CrossRef]
    [Google Scholar]
  16. Mah R. A., Kuhn D. A. 1984; Transfer of the type species of the genus Methanococcus to the genus Methanosarcina , naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int J Syst Bacteriol 34:263–265 [CrossRef]
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P. A. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  19. Ni S., Boone D. R. 1991; Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae . Int J Syst Bacteriol 41:410–416 [CrossRef]
    [Google Scholar]
  20. Oremland R. S., Polcin S. 1982; Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276
    [Google Scholar]
  21. Oremland R. S., Taylor B. F. 1978; Sulfate reduction and methanogenesis in marine sediments. Geochim Cosmochim Acta 42:209–214 [CrossRef]
    [Google Scholar]
  22. Powell G. E. 1983; Interpreting gas kinetics of batch culture. Biotechnol Lett 5:437–440 [CrossRef]
    [Google Scholar]
  23. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226
    [Google Scholar]
  24. Reeburgh W. S. 1980; Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett 47:345–352 [CrossRef]
    [Google Scholar]
  25. Simankova M. V., Parshina S. N., Tourova T. P., Kolganova T. V., Zehnder A. J. B., Nozhevnikova A. N. 2001; Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst Appl Microbiol 24:362–367 [CrossRef]
    [Google Scholar]
  26. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5:139–156 [CrossRef]
    [Google Scholar]
  27. Sowers K. R., Ferry J. G. 1983; Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens , gen. nov., sp nov.. Appl Environ Microbiol 45:684–690
    [Google Scholar]
  28. Sowers K. R., Noll K. M. 1995; Techniques for anaerobic growth. In Archaea: a Laboratory Manual pp  15–47 Edited by Sowers K. R., Schreier H. J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sowers K. R., Baron S. F., Ferry J. G. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978
    [Google Scholar]
  30. Sprenger W. W., van Belzen M. C., Rosenberg J., Hackstein J. H. P., Keltjens J. T. 2000; Methanomicrococcus blatticola gen. nov., sp. nov. a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana . Int J Syst Evol Microbiol 50:1989–1999 [CrossRef]
    [Google Scholar]
  31. Starr M. P., Mandel M. 1969; DNA base composition and taxonomy of phytopathogenic and other enterobacteria. J Gen Microbiol 56:113–123 [CrossRef]
    [Google Scholar]
  32. Swofford D. L. 2002 paup*: Phylogenetic analysis using parsimony (*and other methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  33. von Klein D., Arab H., Volker H., Thomm M. 2002; Methanosarcina baltica , sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6:103–110 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Zhilina T. N., Zavarzin G. A. 1987; Methanosarcina vacuolata sp. nov., a vacuolated methanosarcina. Int J Syst Bacteriol 37:281–283 [CrossRef]
    [Google Scholar]
  36. Zinder S. H., Sowers K. R., Ferry J. G. 1985; Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 35:522–523 [CrossRef]
    [Google Scholar]
  37. Zwietering M. H., Jongenburger I., Rombouts F. M., van't Riet K. 1990; Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63886-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63886-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error