1887

Abstract

Three strains of a spore-forming, Gram-positive, motile, rod-shaped and boron-tolerant bacterium were isolated from soil. The strains, designated 10a, 11c and 12B, can tolerate 5 % (w/v) NaCl and up to 150 mM boron, but optimal growth was observed without addition of boron or NaCl in Luria–Bertani agar medium. The optimum temperature for growth was 37 °C (range 16–45 °C) and the optimum pH was 7.0–8.0 (range pH 5.5–9.5). A comparative analysis of the 16S rRNA gene sequence demonstrated that the isolated strains were closely related to DSM 2898 (97.2 % similarity) and DSM 28 (96.9 %). DNA–DNA relatedness was greater than 97 % among the isolated strains and 61.1 % with DSM 2898 and 43.2 % with IAM 13420. The phylogenetic and phenotypic analyses and DNA–DNA relatedness indicated that the three strains belong to the same species, that was characterized by a DNA G+C content of 36.5–37.9 mol%, MK-7 as the predominant menaquinone system and iso-C (32 % of the total) as a major cellular fatty acid. In contrast to the type species of the genus , the strains contained peptidoglycan with lysine, aspartic acid, alanine and glutamic acid. Based on the distinctive peptidoglycan composition, phylogenetic analyses and physiology, the strains are assigned to a novel species within a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is strain 10a (=DSM 17140=IAM 15262=ATCC BAA-1146). It is also proposed that and be transferred to this genus as comb. nov. and comb. nov., respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63867-0
2007-05-01
2021-06-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/5/1117.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63867-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Fujiwara T. 2007a; A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 11:217–224 [CrossRef]
    [Google Scholar]
  2. Ahmed I., Yokota A., Fujiwara T. 2007b; Gracilibacillus boraciitolerans sp. nov., a highly boron-tolerant and moderately halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57:796–802 [CrossRef]
    [Google Scholar]
  3. Ahmed I., Yokota A., Fujiwara T. 2007c; Chimaereicella boritolerans sp. nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. Int J Syst Evol Microbiol 57:986–992 [CrossRef]
    [Google Scholar]
  4. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  5. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  6. Chen X., Schauder S., Potier N., Dorsselaer A. V., Pelczer I., Bassler B. L., Hughson F. M. 2002; Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549 [CrossRef]
    [Google Scholar]
  7. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Claus D., Fritze D. 1989 Taxonomy of Bacillus .In Bacillus (Biotechnology Handbooks vol. 2) pp  5–26 Edited by Harwood C. R. New York: Plenum;
    [Google Scholar]
  9. Claus D., Fritze D., Kocur M. 1992; Genera related to the genus Bacillus – Sporolactobacillus , Sporosarcina , Planococcus , Filibacter and Caryophanon . In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications , 2nd edn. vol 2 pp  1769–1791 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  10. Clausen V., Jones J. G., Stackebrandt E. 1985; 16S ribosomal RNA analysis of Filibacter limicola indicates a close relationship to the genus Bacillus . J Gen Microbiol 131:2659–2663
    [Google Scholar]
  11. Cochran D. G. 1995; Toxic effects of boric acid on the German cockroach. Experientia 51:561–563 [CrossRef]
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  13. Fahmy F., Flossdorf J., Claus D. 1985; The DNA base composition of the type strains of the genus Bacillus . Syst Appl Microbiol 6:60–65 [CrossRef]
    [Google Scholar]
  14. Farrow J. A. E., Wallbanks S., Collins M. D. 1994; Phylogenetic interrelationships of round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon , Exiguobacterium , Kurthia , and Planococcus . Int J Syst Bacteriol 44:74–82 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. 2005 phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  16. Glazunova O. O., Raoult D., Roux V. 2006; Bacillus massiliensis sp. nov., isolated from cerebrospinal fluid. Int J Syst Evol Microbiol 56:1485–1488 [CrossRef]
    [Google Scholar]
  17. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  18. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  19. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A. 1998; Virgibacillus : a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus . Int J Syst Bacteriol 48:99–106 [CrossRef]
    [Google Scholar]
  20. Heyrman J., Rodríguez-Díaz M., Devos J., Felske A., Logan N. A., De Vos P. 2005; Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 55:111–117 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov. and classification of ‘ Paenibacillus hongkongensis ’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786 [CrossRef]
    [Google Scholar]
  22. Katsivela E., Bonse D., Krüger A., Strömpl C., Livingston A., Ittich R.-M. 1999; An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial wastewater. Appl Microbiol Biotechnol 52:853–862 [CrossRef]
    [Google Scholar]
  23. Keddie R. M., Jones D. 1992; The genus Kurthia . In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications . , 2nd edn. vol 2 pp  1654–1662 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  24. Keddie R. M., Shaw S. 1986; Genus Kurthia . In Bergey's Manual of Systematic Bacteriology vol 2 pp  1255–1258 Edited by Sneath P. H. A., Mair N., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  26. Kudo T. 2001; Phospholipids. In Identification Manual of Bacteria: Molecular Genetics and Molecular Biological Methods. pp  135–144 Edited by Suzuki K., Hiraishi A., Yokota A. Tokyo: Springer;
  27. La Duc M. T., Satomi M., Venkateswaran K. 2004; Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol 54:195–201 [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  29. Nakamura L. K., Shida O., Takagi H., Komagata K. 2002; Bacillus pycnus sp. nov. and Bacillus neidei sp. nov. round-spored bacteria from soil. Int J Syst Evol Microbiol 52:501–505
    [Google Scholar]
  30. Pechman K. J., Lewis B. J., Woese C. R. 1976; Phylogenetic status of Sporosarcina ureae . Int J Syst Bacteriol 26:305–310 [CrossRef]
    [Google Scholar]
  31. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus . J Gen Microbiol 134:1847–1882
    [Google Scholar]
  32. Ranftl H., Kandler O. 1970; d-aspartyl-l-alanin als Interpeptidbrücke im Murein von Bacillus pasteurii Migula. Z Naturforsch [C] 28:4–8 (in German
    [Google Scholar]
  33. Rheims H., Frühling A., Schumann P., Rohde M., Stackebrandt E. 1999; Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol 49:795–802 [CrossRef]
    [Google Scholar]
  34. Rowe R. I., Eckhert C. D. 1999; Boron is required for zebrafish embryogenesis. J Exp Biol 202:1649–1654
    [Google Scholar]
  35. Rowe R. I., Bouzan C., Nabili S., Eckhert C. D. 1998; The response of trout and zebrafish embryos to low and high boron concentrations is U-shaped. Biol Trace Elem Res 66:261–270 [CrossRef]
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  37. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  38. Shaw S., Keddie R. M. 1983; A numerical taxonomic study of the genus Kurthia with a revised description of Kurthia zopfii and a description of Kurthia gibsonii sp. nov. Syst Appl Microbiol 4:253–276 [CrossRef]
    [Google Scholar]
  39. Shida O., Takagi H., Kadowaki K., Komagata K. 1996; Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946 [CrossRef]
    [Google Scholar]
  40. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  41. Stackebrandt E., Ludwig W., Weizenegger M., Dorn S., McGill T. J., Fox G. E., Woese C. E., Schubert W., Schleifer K.-H. 1987; Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-sporeforming relatives. J Gen Microbiol 133:2523–2529
    [Google Scholar]
  42. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  43. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  44. Warington K. 1923; The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 37:629–672
    [Google Scholar]
  45. Wisotzkey J. D., Jurtshuk P. Jr, Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius , Bacillus acidoterrestris , and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269 [CrossRef]
    [Google Scholar]
  46. Xie C., Yokota A. 2003; Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  47. Yoon J.-H., Weiss N., Lee K.-C., Lee I.-S., Kang K. H., Park Y.-H. 2001; Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 2087–2093 [CrossRef]
  48. Yoon J. H., Kang K. H., Park Y. H. 2002; Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52:2043–2048 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63867-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63867-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error