1887

Abstract

Three Gram-positive, aerobic, non-motile, mesophilic strains, designated 2-25(1), 2-29(17) and 2-70(23), were isolated from sandy soil from Chokoria, Cox's Bazar, Bangladesh. The organisms produce short chains of non-motile spores that emerge singly or in tufts from vegetative hyphae on the surface of agar media. A comparative phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates formed a distinct clade within the evolutionary radiation of the family and clustered with members of the genus . The nearest neighbours were subsp. and subsp. . Chemotaxonomic data, such as the presence of - and 3-hydroxy-diaminopimelic acids, -glycolyl type muramic acid, arabinose and xylose and glucose in whole-cell hydrolysates, phosphatidylethanolamine as a diagnostic phospholipid, a tetrahydrogenated menaquinone with 9 isoprene units as a major menaquinone and fatty acid profiles predominated by iso-branched hexadecanoic acid and iso-branched pentadecanoic acid, supported the affiliation of the novel isolates to the genus . The results of DNA–DNA hybridization and physiological and biochemical tests allowed the novel isolates to be differentiated genotypically and phenotypically from the three recognized species. The three isolates therefore represent novel species for which the names sp. nov. [type strain 2-25(1)=JCM 12950=DSM 44900], sp. nov. [type strain 2-29(17)=JCM 12951=DSM 44901] and sp. nov. [type strain 2-70(23)=JCM 12949=DSM 44899], are proposed. DNA–DNA hybridization tests with subsp. and subsp. , in combination with chemotaxonomic and physiological data, demonstrated that subsp. should be elevated to a separate species for which the name sp. nov., comb. nov. is proposed (type strain JCM 7543=DSM 44098).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63862-0
2006-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/2/393.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63862-0&mimeType=html&fmt=ahah

References

  1. Asano K., Kawamoto I. 1986; Catellatospora , a new genus of the Actinomycetales . Int J Syst Bacteriol 36:512–517 [CrossRef]
    [Google Scholar]
  2. Asano K., Kawamoto I. 1988; Catellatospora citrea subsp. methionotrophica subsp. nov., a methionine-deficient auxotroph of the Actinomycetales . Int J Syst Bacteriol 38:326–327 [CrossRef]
    [Google Scholar]
  3. Asano K., Masunaga I., Kawamoto I. 1989; Catellatospora matsumotoense sp. nov. and C. tsunoense sp. nov., actinomycetes found in woodland soils. Int J Syst Bacteriol 39:309–313 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Faulkner M., Keddie M. 1984; Menaquinone composition of some sporeforming actinomycetes. Syst Appl Microbiol 5:20–29 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Hayakawa M., Nonomura H. 1987; Humic acid-vitamin agar, a new medium for selective isolation of soil actinomycetes. J Ferment Technol 65:501–509 [CrossRef]
    [Google Scholar]
  9. Itoh T., Kudo T., Parenti F., Seino A. 1989; Amended description of the genus Kineosporia , based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 39:168–173 [CrossRef]
    [Google Scholar]
  10. Jacobson E., Grauville W. C., Fogs C. E. 1958 Color Harmony Manual , 4th edn. Chicago: Container Corporation of America;
    [Google Scholar]
  11. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics pp  173–199 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  12. Kudo T., Matsushima K., Itoh T., Sasaki J., Suzuki K. 1998; Description of four new species of the genus Kineosporia : Kineosporia succinea sp.nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia . Int J Syst Bacteriol 48, 1245–1255 [CrossRef]
    [Google Scholar]
  13. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [CrossRef]
    [Google Scholar]
  14. Lechevalier M. P., De Bièvre C., Lechevalier H. A. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [CrossRef]
    [Google Scholar]
  15. Lee S. D., Hah Y. C. 2002; Proposal to transfer Catellatospora ferruginea and ‘ Catellatospora ishikariense ’ to Asanoa gen. nov. as Asanoa ferruginea comb. nov. and Asanoa ishikariensis sp. nov., with emended description of the genus Catellatospora . Int J Syst Evol Microbiol 52:967–972 [CrossRef]
    [Google Scholar]
  16. Lee S. D., Goodfellow M., Hah Y. C. 1999; A phylogenetic analysis of the genus Catellatospora based on 16S ribosomal DNA sequences, including transfer of Catellatospora matsumotoense to the genus Micromonospora as Micromonospora matsumotoense comb. nov. FEMS Microbiol Lett 178:349–354 [CrossRef]
    [Google Scholar]
  17. Lee S. D., Kang S. O., Hah Y. C. 2000; Catellatospora koreensis sp. nov., a novel actinomycete isolated from a gold-mine cave. Int J Syst Evol Microbiol 50:1103–1111 [CrossRef]
    [Google Scholar]
  18. Mikami H., Ishida Y. 1983; Post-column fluorometric detection of reducing sugar in high-performance liquid chromatography using arginine. Bunseki Kagaku 32:E207–E210 [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  20. Nakajima Y., Kitpreechavanich V., Suzuki K., Kudo T. 1999; Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 49:1761–1767 [CrossRef]
    [Google Scholar]
  21. Raeder U., Broda P. 1985; Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20 [CrossRef]
    [Google Scholar]
  22. Saito H., Miura K. I. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sasser M. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids . Technical Note 101: Newark, DE: MIDI;
    [Google Scholar]
  25. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  26. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  27. Stevenson I. L. 1967; Utilization of aromatic hydrocarbons by Arthrobacter spp. Can J Microbiol 13:205–211 [CrossRef]
    [Google Scholar]
  28. Swofford D. L. 2001 PAUP* - Phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  29. Tamaoka J. 1994; Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics pp  463–470 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  31. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Tomiyasu I. 1982; Mycolic acid composition and thermally adaptive changes in Nocardia asteroides . J Bacteriol 151:828–837
    [Google Scholar]
  34. Uchida K., Aida K. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134 [CrossRef]
    [Google Scholar]
  35. Waksman S. A. 1950 The Actinomycetes: their Nature, Occurrence, Activities and Importance Waltham, MA: Chronica Botanica;
    [Google Scholar]
  36. Waksman S. A. 1961 The Actinomycetes , vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams & Wilkins;
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63862-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63862-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error