1887

Abstract

Four nitrite-dissimilating strains, isolated from Weser Estuary sediments, were investigated using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains belong to the ‘’ and are related to the genus . The highest level of sequence similarity (100 %) was found with strain M3A (=ATCC 700596), a dimethyl sulfide-producing marine isolate that was included in this study. DNA–DNA hybridizations between the five strains and related strains confirmed that the former belong to a single and novel species within the genus . The isolates are Gram-negative, motile, rod-shaped cells with a DNA G+C content of about 56 mol%. The whole-cell fatty acid profiles of the isolates were very similar and included C, C cyclo, C 7, summed feature 2 (comprising any combination of C aldehyde, an unknown fatty acid of equivalent chain length 10·928, C iso I and C 3-OH) and summed feature 3 (C iso 2-OH and/or C 7) as the major fatty acid components. On the basis of their phylogenetic, genomic and phenotypic properties, the five novel strains can be assigned to the genus as a novel species, for which the name sp. nov. is proposed. The type strain is LMG 22996 (=CCUG 50924).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63849-0
2005-11-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2571.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63849-0&mimeType=html&fmt=ahah

References

  1. Coenye T., Falsen E., Vancanneyt M., Hoste B., Govan J. R., Kersters K., Vandamme P. 1999; Classification of Alcaligenes faecalis -like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49:405–413 [CrossRef]
    [Google Scholar]
  2. Coenye T., Vancanneyt M., Cnockaert M. C., Falsen E., Swings J., Vandamme P. 2003; Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis -like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Rüger and Tan 1983 as Achromobacter denitrificans comb. nov. Int J Syst Evol Microbiol 53:1825–1831 [CrossRef]
    [Google Scholar]
  3. de Souza M. P., Yoch D. C. 1995; Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes -like dimethyl sulfide-producing marine isolate. Appl Environ Microbiol 61:21–26
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Foss S., Heyen U., Harder J. 1998; Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α -pinene, 2-carene, and α -phellandrene) and nitrate. Syst Appl Microbiol 21:237–244 [CrossRef]
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  7. Kersters K., De Ley J. 1984; Genus Alcaligenes Castellani and Chalmers 1919, 936AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  361–373 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  8. Mergaert J., Verhelst A., Cnockaert M. C., Tan T.-L., Swings J. 2001; Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol 24:98–107 [CrossRef]
    [Google Scholar]
  9. Palleroni N. J., Palleroni A. V. 1978; Alcaligenes latus , a new species of hydrogen-utilizing bacteria. Int J Syst Bacteriol 28:416–424 [CrossRef]
    [Google Scholar]
  10. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  11. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics pp  493–521 Edited by Goodfellow M., O'Donnell A. G. J. Chichester: Wiley;
    [Google Scholar]
  12. Rademaker J. L. W., de Bruijn F. J. 1997; Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In DNA Markers: Protocols Applications and Overviews pp  151–171 Edited by Caetano-Anollés G., Gresshoff P. M. New York: Wiley;
    [Google Scholar]
  13. Rademaker J. L. W., Hoste B., Louws F. J., Kersters K., Swings J., Vauterin L., Vauterin P., de Bruijn F. J. 2000; Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50:665–677 [CrossRef]
    [Google Scholar]
  14. Rehfuss M., Urban J. 2005; Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst Appl Microbiol 28:421–429 [CrossRef]
    [Google Scholar]
  15. Rüger H.-J., Tan T. L., Hentzschel G., Naguib M. 1983; New denitrifying Agrobacterium and Alcaligenes strains from Weser Estuary sediments: taxonomy and physiology. Veroff Inst Meeresforsch Bremerhav 19:229–243
    [Google Scholar]
  16. Schroll G., Busse H.-J., Parrer G., Rölleke S., Lubitz W., Denner E. B. M. 2001; Alcaligenes faecalis subsp. parafaecalis subsp. nov., a bacterium accumulating poly-beta-hydroxybutyrate from acetone-butanol bioprocess residues. Syst Appl Microbiol 24:37–43 [CrossRef]
    [Google Scholar]
  17. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Manual of Methods for General Microbiology pp  611–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Stolz A., Bürger S., Kuhm A., Kämpfer P., Büsse H.-J. 2005; Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. Int J Syst Evol Microbiol 55:1077–1081 [CrossRef]
    [Google Scholar]
  19. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  20. Van Trappen S., Mergaert J., Swings J. 2003; Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 53:1241–1245 [CrossRef]
    [Google Scholar]
  21. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J. 2004; Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov. novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:85–92 [CrossRef]
    [Google Scholar]
  22. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting in bacterial genomes. Nucleic Acids Res 19:6823–6831 [CrossRef]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63849-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63849-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error