1887

Abstract

A novel thermophilic, obligately methylotrophic, methanogenic archaeon, strain L2FAW, was isolated from a thermophilic laboratory-scale upflow anaerobic sludge blanket reactor fed with methanol as the carbon and energy source. Cells of strain L2FAW were non-motile, irregular cocci, 0·7–1·5 μm in diameter and usually occurred singly (sometimes forming clusters of two or four cells). The cells stained Gram-negative and lysed immediately in 0·1 % (w/v) SDS. Growth was inhibited by chloramphenicol and tetracycline, but not by penicillin, bacitracin, spectinomycin, vancomycin or kanamycin. Methanol and mono-, di- and trimethylamine were used as substrates, but H/CO, formate, acetate, propanol, dimethyl sulfide and methanethiol were not. The temperature range for growth was 42–58 °C, with an optimum at 50 °C. The fastest growth was observed at a salinity below 100 mM NaCl; no growth occurred above 300 mM NaCl. The optimal pH for growth was 6·5; growth was observed from pH 5 to pH 7·5. The G+C content of the genomic DNA was 37·6 mol%. Analysis of the 16S rRNA gene sequence and the partial methyl-CoM reductase gene sequence revealed that the organism was phylogenetically closely related to DMS1 (98 % similarity for the 16S rRNA gene sequence and 91 % similarity for the methyl-CoM reductase gene sequence). The DNA–DNA relatedness between L2FAW and DMS1 was 46 %. On the basis of these results, strain L2FAW (=DSM 17232=ATCC BAA-1173) represents the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63818-0
2005-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2465.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63818-0&mimeType=html&fmt=ahah

References

  1. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. ( 2004; ). GenBank: update. Nucleic Acids Res 32 (Database issue), D23–D26.[CrossRef]
    [Google Scholar]
  2. Boone, D. R. & Whitman, W. B. ( 1988; ). Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38, 212–219.[CrossRef]
    [Google Scholar]
  3. Boone, D. R., Whitman, W. B. & Rouviere, P. ( 1993; ). Diversity and taxonomy of methanogens. In Methanogenesis, pp. 35–80. Edited by J. G. Ferry. New York: Chapman & Hall.
  4. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Franzmann, P. D., Springer, N., Ludwig, W., Conway De Macario, E. & Rohde, M. ( 1992; ). A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15, 573–581.[CrossRef]
    [Google Scholar]
  7. Garcia, J. L., Ollivier, B. & Patel, B. K. C. ( 2000; ). Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6, 205–226.[CrossRef]
    [Google Scholar]
  8. Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W. & Saunders, J. R. ( 1996; ). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62, 668–675.
    [Google Scholar]
  9. King, G. M. ( 1984; ). Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments. Appl Environ Microbiol 48, 719–725.
    [Google Scholar]
  10. Lomans, B. P., Maas, R., Luderer, R., Op den Camp, H. J. M., Pol, A., van der Drift, C. & Vogels, G. D. ( 1999; ). Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65, 3641–3650.
    [Google Scholar]
  11. Lomans, B. P., Luderer, R., Steenbakkers, P., Pol, A., van der Drift, C., Vogels, G. D. & Op den Camp, H. J. M. ( 2001; ). Microbial populations involved in cycling of dimethyl sulfide and methanethiol in freshwater sediments. Appl Environ Microbiol 67, 1044–1051.[CrossRef]
    [Google Scholar]
  12. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  13. Lueders, T., Chin, K. J., Conrad, R. & Friedrich, M. ( 2001; ). Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3, 194–204.[CrossRef]
    [Google Scholar]
  14. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  15. Mathrani, I. M., Boone, D. R., Mah, R. A., Fox, G. E. & Lau, P. P. ( 1988; ). Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38, 139–142.[CrossRef]
    [Google Scholar]
  16. Mazumder, T. K., Nishio, N., Fukuzaki, S. & Nagai, S. ( 1987; ). Production of extracellular vitamin B-12 compounds from methanol by Methanosarcina barkeri. Appl Microbiol Biotechnol 26, 511–516.[CrossRef]
    [Google Scholar]
  17. Muyodi, F. J. ( 2000; ). Microbiological analysis of the waters of Lake Victoria in relation to the invasion of the water hyacinth, Eichhornia crassipes (Mart.) Solms. In A case study of the lakeshores of Mwanza municipality, pp. 158–173. PhD thesis, University of Dar es Salaam, Tanzania.
  18. Ollivier, B., Lonbardo, A. & Garcia, J. L. ( 1984; ). Isolation and characterization of a new thermophilic Methanosarcina strain (strain MP). Ann Microbiol (Paris) 135b, 187–198.
    [Google Scholar]
  19. Owen, R. J., Hill, L. R. & Lapage, S. P. ( 1969; ). Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7, 503–516.[CrossRef]
    [Google Scholar]
  20. Paulo, P. L., Jiang, B., Roest, K., van Lier, J. B. & Lettinga, G. ( 2002; ). Start-up of a thermophilic methanol-fed UASB reactor: change in sludge characteristics. Water Sci Technol 45, 145–150.
    [Google Scholar]
  21. Plumb, J. J., Bell, J. & Stuckey, D. C. ( 2001; ). Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Environ Microbiol 67, 3226–3235.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Schlotelburg, C., Von Wintzingerode, C., Hauck, R., Von Wintzingerode, F., Hegemann, W. & Göbel, U. B. ( 2002; ). Microbial structure of an anaerobic bioreactor population that continuously dechlorinates 1,2-dichloropropane. FEMS Microbiol Ecol 39, 229–237.[CrossRef]
    [Google Scholar]
  24. Simankova, M. V., Kotsyurbenko, O. R., Lueders, T., Nozhevnikova, A. N., Wagner, B., Conrad, R. & Friedrich, M. W. ( 2003; ). Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26, 312–318.[CrossRef]
    [Google Scholar]
  25. Sprenger, W. W., van Belzen, M. C., Rosenberg, J., Hackstein, J. H. & Keltjens, J. T. ( 2000; ). Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50, 1989–1999.[CrossRef]
    [Google Scholar]
  26. Springer, E., Sachs, M. S., Woese, C. R. & Boone, D. R. ( 1995; ). Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45, 554–559.[CrossRef]
    [Google Scholar]
  27. Stams, A. J. M., van Dijk, J. B., Dijkema, C. & Plugge, C. M. ( 1993; ). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59, 1114–1119.
    [Google Scholar]
  28. Touzel, J. P., Petroff, D. & Albagnac, G. ( 1985; ). Isolation and characterization of a new thermophilic Methanosarcina strain Chti-55. Syst Appl Microbiol 6, 66–71.[CrossRef]
    [Google Scholar]
  29. Watanabe, K., Kodama, Y., Hamamura, N. & Kaku, N. ( 2002; ). Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Appl Environ Microbiol 68, 3899–3907.[CrossRef]
    [Google Scholar]
  30. Yamaguchi, M., Minami, K., Tanimoto, Y. & Okamura, K. ( 1989; ). Effects of volatile fatty acids on methanogenesis of methanol and of pregrowth with methanol on acetate utilization by methanogens. J Ferment Bioeng 68, 428–432.[CrossRef]
    [Google Scholar]
  31. Zhilina, T. N. & Zavarzin, G. A. ( 1987; ). Methanohalobium evestigatus, n. gen., n. sp. - an extremely halophilic methanogenic archaebacterium. Dokl Akad Nauk SSSR 293, 464–468 (in Russian).
    [Google Scholar]
  32. Zinder, S. H. & Mah, R. A. ( 1979; ). Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38, 996–1008.
    [Google Scholar]
  33. Zoetendal, E. G., Akkermans, A. D. L. & de Vos, W. M. ( 1998; ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 3854–3859.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63818-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63818-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error