1887

Abstract

An eicosapentaenoic acid-producing bacterium, previously described as sp. strain SCRC-2738, was classified by phenotypic characterization, chemotaxonomic analysis, 16S rRNA gene sequence analysis and DNA–DNA hybridization. The isolate was Gram-negative, rod-shaped and motile by using polar flagella. The strain grew at 4–32 °C; the optimum growth temperature was 27 °C. NaCl was required for growth. The major isoprenoid quinones were ubiquinone-7 and ubiquinone-8 and its DNA G+C content was 42·8 mol%. The whole-cell fatty acids mainly (above 5 %) consisted of iso-C, iso-C, C, C 7, C 7 and C 3 (eicosapentaenoic acid). Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain SCRC-2738 was related closely (sequence similarities above 99 %) to (99·3 %), (99·3 %) and (99·2 %). DNA–DNA hybridization and phenotypic characteristics confirmed that strain SCRC-2738 merited classification as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SCRC-2738 (=JCM 13187=NCIMB 14060).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63804-0
2005-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2355.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63804-0&mimeType=html&fmt=ahah

References

  1. Abbey M., Clifton P., Kestin M., Belling B., Nestel P. 1990; Effect of fish oil on lipoproteins, lecithin : cholesterol acyltransferase, and lipid transfer protein activity in humans. Arteriosclerosis 10:85–94 [CrossRef]
    [Google Scholar]
  2. Allen E. E., Bartlett D. H. 2002; Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148:1903–1913
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  4. Baumann P., Gauthier M. J., Baumann L. 1984; Genus Alteromonas Baumann, Baumann, Mandel and Allen 1972, 418AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  343–352 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewnella frigidimarina sp. nov. novel Antactic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  6. Bowman J. P., Gosink J. J., McCammon S. A., Lewis T. E., Nichols D. S., Nichols P. D., Skerratt J. H., Staley J. T., McMeekin T. A. 1998; Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6 ω 3). Int J Syst Bacteriol 48:1171–1180 [CrossRef]
    [Google Scholar]
  7. Bozal N., Montes M. J., Tudela E., Jiménez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Harris W. S. 1989; Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 30:785–807
    [Google Scholar]
  10. Ivanova E. P., Sawabe T., Gorshkova N. M., Svetashev V. I., Mikhailov V. V., Nicolau D. V., Christen R. 2001; Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033 [CrossRef]
    [Google Scholar]
  11. Ivanova E. P., Sawabe T., Hayashi K., Gorshkova N. M., Zhukova N. V., Nedashkovskaya O. I., Mikhailov V. V., Nicolau D. V., Christen R. 2003; Shewanella fidelis sp. nov., isolated from sediments and sea water. Int J Syst Evol Microbiol 53:577–582 [CrossRef]
    [Google Scholar]
  12. Kawasaki K., Nogi Y., Hishinuma M., Nodasaka Y., Matsuyama H., Yumoto I. 2002; Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 52:1455–1459 [CrossRef]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  14. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  15. Leonardo M. R., Moser D. P., Barbieri E., Brantner C. A., MacGregor B. J., Paster B. J., Stackebrandt E., Nealson K. H. 1999; Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei . Int J Syst Bacteriol 49:1341–1351 [CrossRef]
    [Google Scholar]
  16. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  17. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. F., Widder E. A., Case J. F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039 [CrossRef]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  19. Orikasa Y., Yamada A., Yu R., Ito Y., Nishida T., Yumoto I., Watanabe K., Okuyama H. 2004; Characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. strain SCRC-2738. Cell Mol Biol 50:625–630
    [Google Scholar]
  20. Radwan S. S. 1991; Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 35:421–430
    [Google Scholar]
  21. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:767–779 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Satomi M., Oikawa H., Yano Y. 2003; Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53:491–499 [CrossRef]
    [Google Scholar]
  24. Skerratt J. H., Bowman J. P., Nichols P. D. 2002; Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106 [CrossRef]
    [Google Scholar]
  25. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  26. Terano T., Salmon J. A., Moncada S. 1984; Biosynthesis and biological activity of leukotriene B5 . Prostaglandins 27:217–232
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Uauy-Dagach R., Valenzuela A. 1992; Marine oils as a source of omega-3 fatty acids in the diet: how to optimize the health benefits. Prog Nutr Food Sci 16:199–243
    [Google Scholar]
  29. Weiner R. M., Coyne V. E., Brayton P., West P., Raiken S. F. 1988; Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int J Syst Bacteriol 38:240–244 [CrossRef]
    [Google Scholar]
  30. Yano Y., Nakayama A., Yoshida K. 1997; Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577
    [Google Scholar]
  31. Yazawa K. 1996; Production of eicosapentaenoic acid from marine bacteria. Lipids 31:Suppl.S297–S300 [CrossRef]
    [Google Scholar]
  32. Yazawa K., Araki K., Okazaki N., Watanabe K., Ishikawa C., Inoue A., Numao N., Kondo K. 1988a; Production of eicosapentaenoic acid by marine bacteria. J Biochem 103:5–7
    [Google Scholar]
  33. Yazawa K., Araki K., Watanabe K., Ishikawa C., Inoue A., Kondo K., Watabe S., Hashimoto K. 1988b; Eicosapentaenoic acid productivity of the bacteria isolated from fish intestines. Nippon Suisan Gakkaishi 54:1835–1838 [CrossRef]
    [Google Scholar]
  34. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355
    [Google Scholar]
  35. Yumoto I., Hirota K., Sogabe Y., Nodasaka Y., Yokota Y., Hoshino T. 2003; Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 53:1985–1989 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63804-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63804-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error