gen. nov., sp. nov. Free

Abstract

Three novel strains were isolated from a soil sample collected in Japan using GPM agar plates supplemented with superoxide dismutase and/or catalase. The strains were Gram-positive, catalase-positive, irregular rod-shaped bacteria with -diaminopimelic acid as a peptidoglycan diagnostic diamino acid, and the acyl type of the peptidoglycan was acetyl. The major menaquinone was MK-8(H). Mycolic acids were not detected. The G+C content of the DNA was 72–73 mol%. On the basis of morphological and chemotaxonomic properties and a phylogenetic analysis using 16S rRNA gene sequences, these strains were classified as a novel genus and species, gen. nov., sp. nov., in the family of the order . The type strain is KV-628 (=NRRL B-24347=JCM 12835=NBRC 100762).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63799-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2555.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63799-0&mimeType=html&fmt=ahah

References

  1. Becker B., Lechevalier M. P., Lechevalier H. A. 1965; Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 13:236–243
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Dorsch M., Stackebrandt E. 1989; Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int J Syst Bacteriol 39:1–6 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Routh J., Saraswathy A., Lawson P. A., Schumann P., Welinder-Olsson C., Falsen E. 2004; Arsenicicoccus bolidensis gen. nov., sp. nov., a novel actinomycete isolated from contaminated lake sediment. Int J Syst Evol Microbiol 54:605–608 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Groth I., Schumann P., Martin K., Schuetze B., Augsten K., Kramer I., Stackebrandt E. 1999; Ornithinicoccus hortensis gen. nov., sp. nov., a soil actinomycete which contains l-ornithine. Int J Syst Bacteriol 49:1717–1724 [CrossRef]
    [Google Scholar]
  7. Groth I., Schumann P., Weiss N., Schuetze B., Augsten K., Stackebrandt E. 2001; Ornithinimicrobium humiphilum gen. nov., sp. nov. a novel soil actinomycete with l-ornithine in the peptidoglycan. Int J Syst Evol Microbiol 51:81–87
    [Google Scholar]
  8. Groth I., Schumann P., Schuetze B., Augsten K., Kramer I., Stackebrandt E. 2002; Knoellia sinensis gen. nov., sp. nov. and Knoellia subterranea sp. nov., two novel actinobacteria isolated from a cave. Int J Syst Evol Microbiol 52:77–84
    [Google Scholar]
  9. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  10. Huck T. A., Porter N., Bushell M. E. 1991; Positive selection of antibiotic-producing soil isolates. J Gen Microbiol 137:2321–2329 [CrossRef]
    [Google Scholar]
  11. Iwai Y., Takahashi Y. 1992; Selection of microbial sources of bioactive compounds. In The Search for Bioactive Compounds from Microorganisms pp  281–302 Edited by Ōmura S. New York: Springer;
    [Google Scholar]
  12. Jiang C.-L., Xu L.-H. 1996; Diversity of aquatic actinomycetes in lakes of the middle plateau, Yunnan, China. Appl Environ Microbiol 62:249–253
    [Google Scholar]
  13. Kalakoutskii L. V., Kirillova I. P., Krasil'Nikov N. A. 1967; A new genus of the Actinomycetales, Intrasporangium gen. nov. J Gen Microbiol 48:79–85 [CrossRef]
    [Google Scholar]
  14. Kawamoto I., Oka T., Nara T. 1981; Cell wall composition of Micromonospora olivoasterospora , Micromonospora sagamiensis , and related organisms. J Bacteriol 146:527–534
    [Google Scholar]
  15. Kimura M., Ohta T. 1972; On the stochastic model for estimation of mutation distance between homologous proteins. J Mol Evol 2:87–90 [CrossRef]
    [Google Scholar]
  16. Martin K., Schumann P., Rainey F. A., Schuetze B., Groth I. 1997; Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso -diaminopimelic acid in the cell wall.. Int J Syst Bacteriol 47:529–534 [CrossRef]
    [Google Scholar]
  17. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Burghardt J., Tokiwa Y., Stratton H. M. 2000; Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp.nov. and Tetrasphaera australiensis sp. nov. Int J Syst Evol Microbiol 50:593–603 [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., Patel P. V., Alshamony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  19. Nioh I., Osada M., Yamamura T., Muramatsu K. 1995; Acidophilic and acid-tolerant actinomycetes in an acid tea field soil. J Gen Appl Microbiol 41:175–180 [CrossRef]
    [Google Scholar]
  20. Nonomura H., Hayakawa M. 1988; New methods for the selective isolation of soil Actinomycetes. In Biology of Actinomycetes '88 pp  288–293 Edited by Okami Y., Beppu T., Ogawara H. Tokyo: Japan Scientific Societies;
    [Google Scholar]
  21. Prauser H., Schumann P., Rainey F. A., Kropppenstedt R. M., Stackebrandt E. 1997; Terracoccus luteus gen. nov., sp. nov. an ll-diaminopimelic acid-containing coccoid actinomycete from soil. Int J Syst Bacteriol 47:1218–1224 [CrossRef]
    [Google Scholar]
  22. Pridham T. G., Gottlieb D. 1948; The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 56:107–114
    [Google Scholar]
  23. Roller C., Ludwig W., Schleifer K. H. 1992; Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes. J Gen Microbiol 138:1167–1175 [CrossRef]
    [Google Scholar]
  24. Saito H., Miura K. 1983; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biophys Acta 72:619–629
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  27. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov. an ll-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47:278–283 [CrossRef]
    [Google Scholar]
  28. Suzuki K., Komagata K. 1983; Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int J Syst Bacteriol 33:188–200 [CrossRef]
    [Google Scholar]
  29. Suzuki S., Takahashi K., Okuda T., Komatsubara S. 1998; Selective isolation of Actinobispora on gellan gum plate. Can J Microbiol 44:1–5 [CrossRef]
    [Google Scholar]
  30. Takahashi Y., Matsumoto A., Seino A., Iwai Y., Ōmura S. 2002; Streptomyces avermectinius sp. nov., an avermectin-producing strain. Int J Syst Evol Microbiol 52:2163–2168 [CrossRef]
    [Google Scholar]
  31. Takahashi Y., Katoh S., Shikura N., Tomoda H., Ōmura S. 2003).; Superoxide dismutase produced by soil bacteria increases bacterial colony growth from soil samples. J Gen Appl Microbiol 49:263–266 [CrossRef]
    [Google Scholar]
  32. Takeuchi M., Hatano K. 1999; Phylogenetic analysis of Actinobacteria in the mangrove rhizosphere. IFO Res Commun 19:47–62
    [Google Scholar]
  33. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  34. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Tomiyasu I. 1982; Mycolic acid composition and thermally adaptative changes in Nocardia asteroides . J Bacteriol 151:828–837
    [Google Scholar]
  37. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by a colorimetric method. J Gen Appl Microbiol 23:249–260 [CrossRef]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  39. Yu L., Takahashi Y., Matsumoto A., Seino A., Iwai Y., Ōmura S. 2002; Application of PCR for selection of gram-positive bacteria with high DNA G+C content among new isolates. Actinomycetologica 16:1–5 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63799-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63799-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed