Three strains of bacteria that degrade the cyanobacterial hepatotoxin microcystin, Y2, MDB2 and MDB3, were isolated from a eutrophic lake, Lake Suwa, and the Tenryu River, Japan, and characterized. These strains were aerobic and chemo-organotrophic and their cells were Gram-negative, non-spore-forming rods, motile by means of single polar flagella. Yellow-pigmented colonies were formed on nutrient agar media. The strains assimilated only citrate among the organic compounds tested as carbon sources. The G+C content of genomic DNA ranged from 63·6 to 63·7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolates formed a tight cluster within the family but were clearly separate from established genera of this family, e.g. , , and ; sequence similarities between the new isolates and type strains from established genera ranged from 90·9 to 94·9 %. Chemotaxonomic and phenotypic data supported the conclusion that these strains were members of the family . The major components of the cellular fatty acids were 18 : 17 (36–41 %) and 16 : 17 (33–36 %). Hydroxy fatty acids were mainly 2-OH 14 : 0 (11–13 %), and 3-OH fatty acids were absent. Glycosphingolipids were detected. Ubiquinone-10 and homospermidine were present as the major quinine and polyamine, respectively. Thus, it is proposed that the three strains represent a new genus and species of the family with the name gen. nov., sp. nov. The type strain is Y2 (=KCTC 12019=JCM 13185).


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. F., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Barrow, G. I. & Feltham, R. K. A.(1993).Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  3. Bourne, D. G., Riddles, P., Jones, G. J., Smith, W. & Blakeley, R. L.(2001). Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ Toxicol 16, 523–534.[CrossRef] [Google Scholar]
  4. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F.(1978). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef] [Google Scholar]
  5. Hamana, K. & Takeuchi, M.(1998). Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclass of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. Microbiol Cult Coll 14, 1–14 (in Japanese). [Google Scholar]
  6. Hamana, K., Sakamoto, A., Tachiyanagi, S., Terauchi, E. & Takeuchi, M.(2003). Polyamine profiles of some members of the alpha subclass of the class Proteobacteria: polyamine analysis of 20 recently described genera. Microbiol Cult Coll 19, 13–21 (in Japanese). [Google Scholar]
  7. Harada, K., Imanishi, S., Kato, H., Mizuno, M., Ito, E. & Tsuji, K.(2004). Isolation of Adda from microcystin-LR by microbial degradation. Toxicon 44, 107–109.[CrossRef] [Google Scholar]
  8. Hiraishi, A., Ueda, Y., Ishihara, J. & Mori, T.(1996). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42, 457–470.[CrossRef] [Google Scholar]
  9. Inoue, K., Habe, H., Yamane, H., Omori, T. & Nojiri, H.(2005). Diversity of carbazole-degrading bacteria having the car gene cluster: isolation of a novel gram-positive carbazole-degrading bacterium. FEMS Microbiol Lett 245, 145–153.[CrossRef] [Google Scholar]
  10. Ishii, H., Nishijima, M. & Abe, T.(2004). Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Res 38, 2667–2676.[CrossRef] [Google Scholar]
  11. Iwasaki, M. & Hiraishi, A.(1998). A new approach to numerical analysis of microbial quinone profiles in the environment. Microbes Environ 13, 67–76.[CrossRef] [Google Scholar]
  12. Jochimsen, E. M., Carmichael, W. W., An, J. S. & 9 other authors(1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338, 873–878.[CrossRef] [Google Scholar]
  13. Kämpfer, P., Denner, E. B. M., Meyer, S., Moore, E. R. B. & Busse, H.-J.(1997). Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47, 577–583.[CrossRef] [Google Scholar]
  14. Katayama-Fujimura, Y., Komatsu, Y., Kuraishi, H. & Kaneko, T.(1984). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48, 3169–3172.[CrossRef] [Google Scholar]
  15. Kosako, Y., Yabuuchi, E., Naka, T., Fujiwara, N. & Kobayashi, K.(2000). Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44, 563–575.[CrossRef] [Google Scholar]
  16. Kuiper-Goldman, T., Falconer, I. & Fitzgerald, J.(1999). Human health aspects. In Toxic Cyanobacteria, pp. 113–152. Edited by I. Chorus & J. Bartram. London: E. & F. N. Spon.
  17. Park, H.-D., Sasaki, Y., Maruyama, T., Yanagisawa, E., Hiraishi, A. & Kato, K.(2001). Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16, 337–343.[CrossRef] [Google Scholar]
  18. Saito, H. & Miura, K.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  19. Saito, T., Okano, K., Park, H.-D., Itanaka, T., Inamori, Y., Neilan, B. A., Burns, B. P. & Sugiura, N.(2003). Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229, 271–276.[CrossRef] [Google Scholar]
  20. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  21. Takeuchi, M., Kawai, F., Shimada, Y. & Yokota, A.(1993). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16, 227–238.[CrossRef] [Google Scholar]
  22. Takeuchi, M., Hamana, K. & Hiraishi, A.(2001). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417. [Google Scholar]
  23. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  24. Tiirola, M. A., Busse, H.-J., Kämpfer, P. & Männistö, M. K.(2005).Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55, 583–588.[CrossRef] [Google Scholar]
  25. Ushiba, U., Takahara, Y. & Ohta, H.(2003).Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53, 2045–2048.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error