1887

Abstract

A moderately thermophilic, anaerobic, chemolithoheterotrophic, sulfate-reducing bacterium, strain CO-1-SRB, was isolated from sludge from an anaerobic bioreactor treating paper mill wastewater. Cells were Gram-positive, motile, spore-forming rods. The temperature range for growth was 30–68 °C, with an optimum at 55 °C. The NaCl concentration range for growth was 0–17 g l; there was no change in growth rate until the NaCl concentration reached 8 g l. The pH range for growth was 6·0–8·0, with an optimum of 6·8–7·2. The bacterium could grow with 100 % CO in the gas phase. With sulfate, CO was converted to H and CO and part of the H was used for sulfate reduction; without sulfate, CO was completely converted to H and CO. With sulfate, strain CO-1-SRB utilized H/CO, pyruvate, glucose, fructose, maltose, lactate, serine, alanine, ethanol and glycerol. The strain fermented pyruvate, lactate, glucose and fructose. Yeast extract was necessary for growth. Sulfate, thiosulfate and sulfite were used as electron acceptors, whereas elemental sulfur and nitrate were not. A phylogenetic analysis of 16S rRNA gene sequences placed strain CO-1-SRB in the genus , closely resembling DSM 574 and sp. RHT-3 (99 and 100 % similarity, respectively). However, the latter strains were completely inhibited above 20 and 50 % CO in the gas phase, respectively, and were unable to ferment CO, lactate or glucose in the absence of sulfate. DNA–DNA hybridization of strain CO-1-SRB with and sp. RHT-3 showed 53 and 60 % relatedness, respectively. On the basis of phylogenetic and physiological features, it is suggested that strain CO-1-SRB represents a novel species within the genus , for which the name is proposed. This is the first description of a sulfate-reducing micro-organism that is capable of growth under an atmosphere of pure CO with and without sulfate. The type strain is CO-1-SRB (=DSM 14880=VKM B-2319).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63780-0
2005-09-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552159.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63780-0&mimeType=html&fmt=ahah

References

  1. Akagi, J. M. & Jackson, G. ( 1967; ). Degradation of glucose by proliferating cells of Desulfotomaculum nigrificans. Appl Microbiol 15, 1427–1430.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Campbell, L. L. & Postgate, J. R. ( 1965; ). Classification of the spore-forming sulphate-reducing bacteria. Bacteriol Rev 29, 359–363.
    [Google Scholar]
  4. Campbell, L. L. & Singleton, R. ( 1986; ). Genus Desulfotomaculum Campbell and Postgate 1965 , 361AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1200–1202. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. Daumas, S., Cord-Ruwisch, R. & Garcia, J. L. ( 1988; ). Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek 54, 165–178.[CrossRef]
    [Google Scholar]
  7. Davidova, M. N., Tarasova, N. B., Mukhitova, F. K. & Karpilova, I. U. ( 1994; ). Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol 40, 417–425.[CrossRef]
    [Google Scholar]
  8. Hagenauer, A., Hippe, H. & Rainey, F. A. ( 1997; ). Desulfotomaculum aeronauticum sp. nov., a spore forming, thiosulfate-reducing bacterium from corroded aluminium alloy in an aircraft. Syst Appl Microbiol 20, 65–71.[CrossRef]
    [Google Scholar]
  9. Henstra, A. M. & Stams, A. J. M. ( 2004; ). Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70, 7236–7240.[CrossRef]
    [Google Scholar]
  10. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. (editors) ( 1994; ). Bergey's Manual of Determinative Bacteriology, 9th edn. Baltimore: Williams & Wilkins.
  11. Karpilova, I. Iu., Davidova, M. N. & Belyaeva, M. I. ( 1983; ). The effect of carbon monoxide on the growth of sulfate-reducing bacteria and their oxidation of this substrate. Nauchnye Doki Vyss Shkoly Biol Nauki 1, 85–88 (in Russian).
    [Google Scholar]
  12. Klemps, R., Cypionka, H., Widdel, F. & Pfennig, N. ( 1985; ). Growth with hydrogen and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143, 203–208.[CrossRef]
    [Google Scholar]
  13. Liu, Y., Karnauchow, T. M., Jarrell, K. F., Balkwill, D. L., Drake, G. R., Ringelberg, D., Clarno, R. & Boone, D. R. ( 1997; ). Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface and Desulfotomaculum luciae sp. nov., from a hot spring. Int J Syst Bacteriol 47, 615–621.[CrossRef]
    [Google Scholar]
  14. Love, C. A., Patel, B. K. C., Nickols, P. D. & Stackebrandt, E. ( 1993; ). Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the great artesian basin of Australia. Syst Appl Microbiol 16, 244–251.[CrossRef]
    [Google Scholar]
  15. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  16. Lupton, F. S., Conrad, R. & Zeikus, J. G. ( 1984; ). CO metabolism of Desulfovibrio vulgaris strain Madison: physiological function in the absence or presence of exogenous substrates. FEMS Microbiol Lett 23, 263–268.[CrossRef]
    [Google Scholar]
  17. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  18. Mori, K., Hatsu, M., Kimura, R. & Takamizawa, K. ( 2000; ). Effect of heavy metals on the growth of a methanogen in pure culture and coculture with a sulfate-reducing bacterium. J Biosci Bioeng 90, 260–265.[CrossRef]
    [Google Scholar]
  19. Mörsdorf, G., Frunzke, K., Gadkari, D. & Meyer, O. ( 1992; ). Microbial growth on carbon monoxide. Biodegradation 3, 61–82.
    [Google Scholar]
  20. Parshina, S. N., Kleerebezem, R., Sanz, J. L., Lettinga, G., Nozhevnikova, A. N., Kostrikina, N. A., Lysenko, A. M. & Stams, A. J. M. ( 2003; ). Soehngenia saccharolytica gen. nov., sp. nov. and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria. Int J Syst Evol Microbiol 53, 1791–1799.[CrossRef]
    [Google Scholar]
  21. Parshina, S. N., Kijlstra, S. W. S., Henstra, A. M., Sipma, J., Plugge, C. M. & Stams, A. J. M. ( 2005; ). Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol (in press). doi:10.1007/s00253-004-1878-x
    [Google Scholar]
  22. Postgate, J. R. ( 1979; ). The Sulphate-Reducing Bacteria, p. 16. Cambridge: Cambridge University Press.
  23. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  24. Sipma, J., Lens, P. N. L., Stams, A. J. M. & Lettinga, G. ( 2003; ). Carbon monoxide conversion by anaerobic bioreactor sludges. FEMS Microbiol Ecol 44, 271–277.[CrossRef]
    [Google Scholar]
  25. Sipma, J., Meulepas, R. J. W., Parshina, S. N., Stams, A. J. M., Lettinga, G. & Lens, P. N. L. ( 2004; ). Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 °C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl Microbiol Biotechnol 64, 421–428.[CrossRef]
    [Google Scholar]
  26. Sokolova, T. G., Gonzalez, J. M., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kato, C., Bonch-Osmolovskaya, E. A. & Robb, F. T. ( 2001; ). Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51, 141–149.
    [Google Scholar]
  27. Sokolova, T. G., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kolganova, T. V. & Bonch-Osmolovskaya, E. A. ( 2002; ). Carboxydocella thermoautotrophica gen. nov. sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52, 1–6.
    [Google Scholar]
  28. Sokolova, T. G., Gonzalez, J. M., Kostrikina, N. A., Chernyh, N. A., Slepova, T. V., Bonch-Osmolovskaya, E. A. & Robb, F. T. ( 2004a; ). Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54, 2353–2359.[CrossRef]
    [Google Scholar]
  29. Sokolova, T. G., Jeanthon, C., Kostrikina, N., Chernyh, N. A., Lebedinsky, A. V., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2004b; ). The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8, 317–323.
    [Google Scholar]
  30. Svetlichny, V. A., Sokolova, T. G., Gerhardt, M., Ringpfel, M., Kostrikina, N. A. & Zavarzin, G. A. ( 1991; ). Carboxydothermus hydrogenoformans gen. nov., sp. nov. a CO utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir island. Syst Appl Microbiol 14, 254–260.[CrossRef]
    [Google Scholar]
  31. Svetlichny, V. A., Sokolova, T. G., Kostrikina, N. A. & Lysenko, A. M. ( 1994; ). A new thermophilic anaerobic carboxydotrophic bacterium Carboxydothermus restrictus sp. nov. Microbiology (English translation of Mikrobiologiia) 63, 294–297.
    [Google Scholar]
  32. Svetlitchnyi, V., Peschel, C., Acker, G. & Meyer, O. ( 2001; ). Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183, 5134–5144.[CrossRef]
    [Google Scholar]
  33. Symonds, R. B., Rose, W. I., Bluth, G. & Gerlach, T. M. ( 1994; ). Volcanic gas studies: methods, results, and applications. In Volatiles in Magma. Reviews in Mineralogy, vol. 30, pp. 1–66. Edited by M. R. Carroll & J. R. Holloway. Washington, DC: Mineralogical Society of America.
  34. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  35. Ueki, A. & Suto, T. ( 1979; ). Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25, 185–196.[CrossRef]
    [Google Scholar]
  36. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  37. Widdel, F. & Pfennig, N. ( 1977; ). A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112, 119–122.[CrossRef]
    [Google Scholar]
  38. Widdel, F. & Pfennig, N. ( 1981; ). Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch Microbiol 129, 401–402.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63780-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63780-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error