1887

Abstract

Phylogenetic relationships within the halophilic archaea were inferred from comparisons of the 16S rRNA gene sequences from 61 strains, representing 18 genera with validly published names within the order . Trees produced using distance-matrix (least-squares and neighbour-joining) methods affirm with strong bootstrap support that the members of the order are a monophyletic group. Ten genera were supported as monophyletic groups [, , , , , (multiple sequences from a single strain), , , and ] and eight genera were represented by a single strain (, , , , , , and ). The genus was always paraphyletic, and the phylogenetic placement of and sister groups to and could not be resolved. Both treeing methods failed to resolve the deep branching patterns within the order and the relationships between the major clades. Additional representation from the currently monospecific genera and/or the use of other macromolecules may be required to resolve the relationships within the order .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63776-0
2006-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1223.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63776-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Dewhirst, F. E., Paster, B. J., Volcani, B. E. & Ventosa, A. ( 1996; ). Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 62, 3779–3786.
    [Google Scholar]
  2. Baliga, N. S., Bonneau, R., Facciotti, M. T. & 12 other authors ( 2004; ). Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14, 2221–2234.[CrossRef]
    [Google Scholar]
  3. Boucher, Y., Douady, C. J., Sharma, A. K., Kamekura, M. & Doolittle, W. F. ( 2004; ). Intragenomic heterogeneity and intragenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186, 3980–3990.[CrossRef]
    [Google Scholar]
  4. de Rijk, P. & de Wachter, R. ( 1993; ). dcse, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9, 735–740.
    [Google Scholar]
  5. Elazari-Volcani, B. ( 1957; ). Genus XII. Halobacterium. In Bergey's Manual of Determinative Bacteriology, 7th edn, pp. 207–212. Edited by R. S. Breed, E. G. D. Murray & N. R. Smith. Baltimore: Williams & Wilkins
  6. Felsenstein, J. ( 2004; ). phylip – Phylogeny Inference Package documentation files, version 3.62c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
  7. Fitch, W. K. & Margoliash, E. ( 1967; ). Construction of phylogenetic trees. Science 155, 279–284.[CrossRef]
    [Google Scholar]
  8. Galinski, E. A. & Tindall, B. J. ( 1992; ). Biotechnological prospects for halophiles and halotolerant microorganisms. In Molecular Biology and Biotechnology of Extremophiles, pp. 76–114. Edited by R. A. Herbert & R. J. Sharp. Glasgow: Mackie.
  9. Goo, Y. A., Roach, J., Glusman, G., Baliga, N. S., Deutsch, K., Pan, M., Kennedy, S., DasSarma, S., Ng, W. V. & Hood, L. ( 2004; ). Low-pass sequencing for microbial comparative genomics. BMC Genomics 3, 1–19.
    [Google Scholar]
  10. Grant, W. D. & Larsen, H. ( 1989; ). Extremely halophilic archaeobacteria. Order Halobacteriales ord. nov. In Bergey's Manual of Systematic Bacteriology, vol. 3, pp. 2216–2218. Edited by J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  11. Grant, W. D., Kamekura, M., McGenity, T. J. & Ventosa, A. ( 2001; ). Class III. Halobacteria class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, p. 294. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  12. Hezayen, F. F., Tindall, B. J., Steinbuchel, A. & Rehm, B. H. A. ( 2002; ). Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52, 2271–2280.[CrossRef]
    [Google Scholar]
  13. Kamekura, M. & Dyall-Smith, M. L. ( 1995; ). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 41, 333–350.[CrossRef]
    [Google Scholar]
  14. Kamekura, M., Dyall-Smith, M. L., Upasani, V., Ventosa, A. & Kates, M. ( 1997; ). Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47, 853–857.[CrossRef]
    [Google Scholar]
  15. Kimura, M. ( 1980; ). A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  16. McGenity, T. J. & Grant, W. D. ( 1995; ). Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34041 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18, 237–243.[CrossRef]
    [Google Scholar]
  17. McGenity, T. J., Gemmell, R. T. & Grant, W. D. ( 1998; ). Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48, 1187–1196.[CrossRef]
    [Google Scholar]
  18. Montalvo-Rodriguez, R., Vreeland, R. H., Oren, A., Kessel, M., Betancourt, C. & Lopez-Garriga, J. ( 1998; ). Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48, 1305–1312.[CrossRef]
    [Google Scholar]
  19. Mylvaganam, S. & Dennis, P. P. ( 1992; ). Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130, 399–410.
    [Google Scholar]
  20. Oren, A. ( 1994; ). The ecology of extremely halophilic archaea. FEMS Microbiol Rev 13, 415–440.[CrossRef]
    [Google Scholar]
  21. Oren, A. ( 1999; ). Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63, 334–348.
    [Google Scholar]
  22. Oren, A. ( 2000; ). Life at high salt concentrations. In The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, release 3.1. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer-Verlag. http://141.150.157.117:8080/prokPUB/index.htm
  23. Oren, A. ( 2002; ). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28, 56–63.[CrossRef]
    [Google Scholar]
  24. Oren, A., Gurevich, P., Gemmell, R. T. & Teske, A. ( 1995; ). Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45, 747–754.[CrossRef]
    [Google Scholar]
  25. Oren, A., Elevi, R., Watanabe, S., Ihara, K. & Corcelli, A. ( 2002; ). Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52, 1831–1835.[CrossRef]
    [Google Scholar]
  26. Rodríguez-Valera, F. ( 1992; ). Biotechnological potential of halobacteria. In The Archaebacteria: Biochemistry and Biotechnology, pp. 135–147. Edited by M. J. Danson, D. W. Hough & G. G. Lunt. London: Biochemical Society.
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Schoop, G. ( 1935; ). Halococcus litoralis, ein obligat halphiler Farbstoffbildner. Dtsch Tierarztl Wochenschr 43, 817–820 (in German).
    [Google Scholar]
  29. Tindall, B. J. ( 2003; ). Taxonomic problems arising in the genera Haloterrigena and Natrinema. Int J Syst Evol Microbiol 53, 1697–169.[CrossRef]
    [Google Scholar]
  30. Tindall, B. J., Ross, H. N. M. & Grant, W. D. ( 1984; ). Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5, 41–57.[CrossRef]
    [Google Scholar]
  31. Torreblanca, M., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M. & Kates, M. ( 1986; ). Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8, 89–99.[CrossRef]
    [Google Scholar]
  32. Ventosa, A. & Nieto, J. J. ( 1995; ). Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11, 85–94.[CrossRef]
    [Google Scholar]
  33. Ventosa, A., Gutierrez, M. C., Kamekura, M. & Dyall-Smith, M. L. ( 1999; ). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49, 131–136.[CrossRef]
    [Google Scholar]
  34. Vreeland, R. H., Straight, S., Krammes, J., Dougherty, K., Rosenzweig, W. D. & Kamekura, M. ( 2002; ). Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6, 445–452.[CrossRef]
    [Google Scholar]
  35. Wainø, M., Tindall, B. J. & Ingvorsen, K. ( 2000; ). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50, 183–190.[CrossRef]
    [Google Scholar]
  36. Watrous, L. E. & Wheeler, Q. D. ( 1981; ). The out-group comparison method of character analysis. Syst Zool 30, 1–11.[CrossRef]
    [Google Scholar]
  37. Xu, Y., Zhou, P. & Tian, X. ( 1999; ). Characterization of two novel haloalkaliphilic archaea, Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49, 261–266.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63776-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63776-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error