1887

Abstract

The taxonomic position of strain LMG 13590, originally isolated from dog faeces and classified as in the BCCM/LMG Bacteria Catalogue, was reinvestigated. This strain and 12 recent isolates from faecal samples of healthy dogs occupied a clearly separate position when investigated with multilocus sequence analysis (MLSA) of the genes encoding the alpha subunit of ATP synthase (), RNA polymerase alpha subunit () and phenylalanyl-tRNA synthase alpha subunit (). The 16S rRNA gene sequence of one representative strain showed highest similarities of 98–99 % with LMG 13521, LMG 12316 and LMG 18727. A further polyphasic taxonomic study based on whole-cell protein fingerprinting, DNA–DNA hybridization and biochemical features demonstrated that the 13 enterococcal dog faecal strains represent a single, novel species for which the name sp. nov. is proposed. The type strain is LMG 13590 (=CCM 7285).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63752-0
2005-09-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552177.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63752-0&mimeType=html&fmt=ahah

References

  1. Baele, M., Baele, P., Vaneechoutte, M., Storms, V., Butaye, P., Devriese, L. A., Verschraegen, G., Gillis, M. & Haesebrouck, F. ( 2000; ). Application of tRNA intergenic spacer PCR for identification of Enterococcus species. J Clin Microbiol 38, 4201–4207.
    [Google Scholar]
  2. Collins, M. D., Rodrigues, U. M., Pigott, N. E. & Facklam, R. R. ( 1991; ). Enterococcus dispar sp. nov. a new Enterococcus species from human sources. Lett Appl Microbiol 12, 95–98.[CrossRef]
    [Google Scholar]
  3. De Graef, E. M., Devriese, L. A., Baele, M., Vancanneyt, M., Swings, J., Haesebrouck, F. & Decostere, A. ( 2005; ). Identification of enterococcal, streptococcal and Weissella species in the faecal flora of individually owned dogs. J Appl Microbiol 99, 348–353.[CrossRef]
    [Google Scholar]
  4. Devriese, L. A., Collins, M. D. & Wirth, R. ( 1992; ). The genus Enterococcus. In The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, pp. 1465–1481. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  5. Devriese, L. A., Pot, B., Van Damme, P., Kersters, K. & Haesebrouck, F. ( 1995; ). Identification of Enterococcus species isolated from foods of animal origin. Int J Food Microbiol 26, 187–197.[CrossRef]
    [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Franz, C. M. A. D., Holzapfel, W. H. & Stiles, M. E. ( 1999; ). Enterococci at the crossroads of food safety? Int J Food Microbiol 47, 1–24.[CrossRef]
    [Google Scholar]
  8. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K. ( 1998; ). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef]
    [Google Scholar]
  9. Klein, G. ( 2003; ). Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88, 23–31.
    [Google Scholar]
  10. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  11. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  12. Naser, S., Thompson, F. L., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleenwerck, I., Thompson, C. C., Vancanneyt, M. & Swings, J. ( 2005a; ). Phylogeny and identification of Enterococci by atpA gene sequence analysis. J Clin Microbiol 43, 2224–2230.[CrossRef]
    [Google Scholar]
  13. Naser, S. M., Thompson, F. L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M. & Swings, J. ( 2005b; ). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151, 2141–2150.[CrossRef]
    [Google Scholar]
  14. Niemann, S., Puehler, A., Tichy, H. V., Simon, R. & Selbitschka, W. ( 1997; ). Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82, 477–484.[CrossRef]
    [Google Scholar]
  15. Pot, B., Vandamme, P. & Kersters, K. ( 1994; ). Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics. Edited by M. Goodfellow & A. G. O'Donnell, pp. 493–521. Chichester: Wiley.
  16. Stackebrandt, E., Frederiksen, W., Garrity, G. M. & 10 other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  17. Švec, P., Devriese, L. A., Sedláček, I., Baele, M., Vancanneyt, M., Haesebrouck, F., Swings, J. & Doškař, J. ( 2001; ). Enterococcus haemoperoxidus sp. nov. and Enterococcus moraviensis sp. nov., isolated from water. Int J Syst Evol Microbiol 51, 1567–1574.
    [Google Scholar]
  18. Vancanneyt, M., Mengaud, J., Cleenwerck, I., Hoste, B., Dawyndt, P., Degivry, M. C., Ringuet, D., Janssens, D. & Swings, J. ( 2004; ). Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov., and emended description of L. kefiranofaciens Fujisawa et al. 1988. Int J Syst Evol Microbiol 54, 551–556.[CrossRef]
    [Google Scholar]
  19. Welsh, J. & McClelland, M. ( 1991; ). Genomic fingerprints produced by PCR with consensus tRNA gene primers. Nucleic Acids Res 19, 861–866.[CrossRef]
    [Google Scholar]
  20. Zeigler, D. R. ( 2003; ). Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53, 1893–1900.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63752-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63752-0
Loading

Data & Media loading...

vol. , part 5, pp. 2177 - 2182

[PDF](39 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error