1887

Abstract

A Gram-negative, rod-shaped, non-motile, non-spore forming bacterium (SV96) was isolated from wetland soil near Ny-Ålesund, Svalbard. On the basis of 16S rRNA gene sequence similarity, strain SV96 was shown to belong to the , related to Z-0021 (99·1 %), ATCC 49878 (97·3 %), A45 (97·0 %) and ATCC 51738 (95·8 %); the closest related species within the genus with a validly published name was ATCC 33003 (95·0 %). Chemotaxonomic data (including the major fatty acids: 16 : 18, 16 : 17 and 16 : 15) supported the affiliation of strain SV96 to the genus . The results of DNA–DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV96 from the four species mentioned above. Strain SV96 therefore represents a novel species, for which the name sp. nov. is proposed (type strain SV96=DSM 17260=ATCC BAA-1195).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63728-0
2006-01-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/1/109.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63728-0&mimeType=html&fmt=ahah

References

  1. Bowman, J. P., Sly, L. I., Nichols, P. D. & Hayward, A. C. ( 1993; ). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43, 735–753.[CrossRef]
    [Google Scholar]
  2. Bowman, J. P., Sly, L. I. & Stackebrandt, E. ( 1995; ). The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol 45, 182–185.[CrossRef]
    [Google Scholar]
  3. Brusseau, G. A., Tsien, H. C., Hanson, R. S. & Wackett, L. P. ( 1990; ). Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1, 19–29.[CrossRef]
    [Google Scholar]
  4. Ezaki, T., Hashimoto, T. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1993; ). phylip - Phylogenetic Interference Package, version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Fuse, H., Ohta, M., Takimura, O., Murakami, K., Inoue, H., Yamaoka, Y., Oclarit, J. M. & Omori, T. ( 1998; ). Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62, 1925–1931.[CrossRef]
    [Google Scholar]
  7. Graham, D. W., Korich, D. G., LeBlanc, R. P., Sinclair, N. A. & Arnold, R. G. ( 1992; ). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58, 2231–2236.
    [Google Scholar]
  8. Høj, L., Olsen, R. A. & Torsvik, V. L. ( 2005; ). Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78° N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53, 89–101.[CrossRef]
    [Google Scholar]
  9. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  10. Lidstrom, M. E. ( 1988; ). Isolation and characterization of marine methanotrophs. Antonie van Leeuwenhoek 54, 189–199.[CrossRef]
    [Google Scholar]
  11. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  12. Mandel, M., Igambi, L., Bergendahl, J., Dobson, M. L., Jr & Scheltgen, E. ( 1970; ). Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101, 333–338.
    [Google Scholar]
  13. McDonald, I. R. & Murrell, J. C. ( 1997; ). The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156, 205–210.[CrossRef]
    [Google Scholar]
  14. Miguez, C. B., Bourque, D., Sealy, J. A., Greer, C. W. & Groleau, D. ( 1997; ). Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). Microb Ecol 33, 21–31.[CrossRef]
    [Google Scholar]
  15. Omelchenko, M. V., Vasilyeva, L. V. & Zavarzin, G. A. ( 1993; ). Psychrophilic methanotroph from Tundra soil. Curr Microbiol 27, 255–259.[CrossRef]
    [Google Scholar]
  16. Omelchenko, M. V., Vasilyeva, L. V., Zavarzin, G. A., Savel'eva, N. D., Lysenko, A. M., Mityushina, L. L., Khmelenina, V. N. & Trotsenko, Y. A. ( 1996; ). A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiia 65, 339–343 (in Russian).
    [Google Scholar]
  17. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  18. Poly, F., Monrozier, L. J. & Bally, R. ( 2001; ). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152, 95–103.[CrossRef]
    [Google Scholar]
  19. Romanovskaya, V. A., Malashenko, Yu. R. & Bogachenko, V. N. ( 1978; ). Corrected diagnoses of genera and species of methane-assimilating bacteria. Mikrobiologiia 47, 120–130 (in Russian).
    [Google Scholar]
  20. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  21. Tourova, T. P., Omel'chenko, M. V., Fegeding, K. V. & Vasil'eva, L. V. ( 1999; ). The phylogenetic position of Methylobacter psychrophilus sp. nov. Mikrobiologiia 68, 493–497 (in Russian).
    [Google Scholar]
  22. Vela, G. R. & Wyss, O. ( 1964; ). Improved stain for visualization of Azotobacter encystment. J Bacteriol 87, 476–477.
    [Google Scholar]
  23. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. ( 1970; ). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61, 205–218.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63728-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63728-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error