1887

Abstract

Eleven novel strains of marine-inhabiting lactic acid bacteria that were isolated from living and decaying marine organisms collected from a temperate area of Japan are described. The isolates were motile with peritrichous flagella and non-sporulating. They lacked catalase, quinones and cytochromes. Fermentation products from glucose were lactate, formate, acetate and ethanol. Lactate yield as percentage conversion from glucose was affected by the pH of the fermentation medium: ∼55 % at the optimal growth pH of 8·0, greater than ∼70 % at pH 7·0 and less than ∼30 % at pH 9·0. The molar ratio of the other three products was the same at each cultivation pH, approximately 2 : 1 : 1. Carbohydrates and related compounds were aerobically metabolized to acetate and pyruvate as well as lactate. The isolates were slightly halophilic, highly halotolerant and alkaliphilic. The optimum NaCl concentration for growth was 2·0–3·0 % (w/v), with a range of 0–25·5 %. The optimum pH for growth was 8·0–9·5, with a range of 6·0–10·0. The G+C content of the DNA was 38·5–40·7 mol%. The isolates constituted two genomic species (DNA–DNA relatedness of less than 41 %) each characterized by sugar fermentation profiles. The cell-wall peptidoglycan of both phenotypes contained -diaminopimelic acid. The major cellular fatty acids were C and a-C. Comparative sequence analysis of the 16S rRNA genes revealed that these isolates represent novel species constituting a phylogenetic unit outside the radiation of typical lactic acid bacteria and an independent line of descent within the group composed of the halophilic/halotolerant/alkaliphilic and/or alkalitolerant species in rRNA group 1, with 94·8–95·1 % similarity to the genus , 93·7–94·1 % to the genus and 93·8–94·2 % to . On the basis of possession of physiological and biochemical characteristics common to typical lactic acid bacteria within rRNA group 1, chemotaxonomic characteristics and phylogenetic independence, a new genus and two species, gen. nov., sp. nov. and sp. nov., are proposed. The type strains are M2-2 (=DSM 17073=IAM 15242=NBRC 100868=NRIC 0628) (G+C content 40·2 mol%) and M23-1 (=DSM 17074=IAM 15247=NBRC 100873=NRIC 0633) (G+C content 38·5 mol%).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63713-0
2005-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2427.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63713-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Axelsson L. T. 1993; Lactic acid bacteria: classification and physiology. In Lactic Acid Bacteria pp  1–63 Edited by Salminen S., von Wright A. New York: Marcel Dekker;
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  4. Bryan-Jones D. G., Whittenbury R. 1969; Haematin-dependent oxidative phosphorylation in Streptococcus faecalis . J Gen Microbiol 58:247–260 [CrossRef]
    [Google Scholar]
  5. Carlsson J., Griffith C. J. 1974; Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol 19:1105–1109 [CrossRef]
    [Google Scholar]
  6. Claus D., Fahmy F., Rolf H. J., Tosunoglu N. 1983; Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4:496–506 [CrossRef]
    [Google Scholar]
  7. Collins M. D., Lund B. M., Farrow J. A. E., Schleifer K.-H. 1983; Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp nov.. J Gen Microbiol 129:2037–2042
    [Google Scholar]
  8. Deutch C. E. 1994; Characterization of a novel salt-tolerant Bacillus sp. from the nasal cavities of desert iguanas. FEMS Microbiol Lett 121:55–60 [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  12. Fukui K., Kato K., Kodama T., Ohta H., Shimamoto T., Shimono T. 1988; Kinetic study of a change in intracellular ATP level associated with aerobic catabolism of ethanol by Streptococcus mutans . J Bacteriol 170:4589–4593
    [Google Scholar]
  13. Garabito M. J., Arahal D. R., Mellado E., Márquez M. C., Ventosa A. 1997; Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741 [CrossRef]
    [Google Scholar]
  14. Gatesoupe F.-J. 1999; The use of probiotics in aquaculture. Aquaculture 180:147–165 [CrossRef]
    [Google Scholar]
  15. Gee J. M., Lund B. M., Metcalf G., Peel J. L. 1980; Properties of a new group of alkalophilic bacteria. J Gen Microbiol 117:9–17
    [Google Scholar]
  16. Gerhardt P., Murray R. G. E., Wood W. A., Kreig N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Gunsalus I. C., Niven C. F. Jr 1942; The effect of pH on the lactic acid fermentation. J Biol Chem 145:131–136
    [Google Scholar]
  18. Hao M. V., Kocur M., Komagata K. 1984; Marinococcus gen. nov., a new genus for motile cocci with meso -diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 30:449–459 [CrossRef]
    [Google Scholar]
  19. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  20. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A. 1998; Virgibacillus : a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus . Int J Syst Bacteriol 48:99–106 [CrossRef]
    [Google Scholar]
  21. Heyndrickx M., Lebbe L., Kersters K., Hoste B., De Wachter R., De Vos P., Forsyth G., Logan N. A. 1999; Proposal of Virgibacillus proomii sp. nov. and emended description of Virgibacillus pantothenticus (Proom and Knight 1950) Heyndrickx et al . 1998. Int J Syst Bacteriol 49:1083–1090 [CrossRef]
    [Google Scholar]
  22. Iizuka H., Yamasato K. 1959; Pediococcus soyae nov. sp., main lactic acid bacterium in “shoyu moromi”. J Gen Appl Microbiol 5:58–73 [CrossRef]
    [Google Scholar]
  23. Inagaki F., Suzuki M., Takai K., Oida H., Sakamoto T., Aoki K., Nealson K. H., Horikoshi K. 2003; Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235 [CrossRef]
    [Google Scholar]
  24. Ishikawa M., Ishizaki S., Yamamoto Y., Yamasato K. 2002; Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48:269–279 [CrossRef]
    [Google Scholar]
  25. Ishikawa M., Ishizaki S., Yamamoto Y., Yamasato K. 2003a; Paraliobacillus ryukyuensis gen. nov., sp. nov. In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM , List no. 91. Int J Syst Evol Microbiol 53:627–628 [CrossRef]
    [Google Scholar]
  26. Ishikawa M., Nakajima K., Yanagi M., Yamamoto Y., Yamasato K. 2003b; Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53:711–720 [CrossRef]
    [Google Scholar]
  27. Jones B. E., Grant W. D., Collins N. C., Mwatha W. E. 1994; Alkaliphiles: diversity and identification. In Bacterial Diversity and Systematics pp  195–230 Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J. New York: Plenum;
    [Google Scholar]
  28. Kandler O., Weiss N. 1986; Regular, nonsporing Gram-positive rods. In Bergey's Manual of Systematic Bacteriology vol 2 pp  1208–1260 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Kandler O., Schillinger U., Weiss N. 1983; Lactobacillus halotolerans sp. nov., nom. rev. and Lactobacillus minor sp. nov., nom. rev. Syst Appl Microbiol 4:280–285 [CrossRef]
    [Google Scholar]
  30. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  31. Kushner D. J. 1978; Life in high salt and solute concentrations: halophilic bacteria. In Microbial Life in Extreme Environments pp  318–346 Edited by Kushner D. J. London: Academic Press;
    [Google Scholar]
  32. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. In Halophilic Bacteria , vol. I pp  109–140 Edited by Rodríguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  33. Lawson P. A., Deutch C. E., Collins M. D. 1996; Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol 81:109–112 [CrossRef]
    [Google Scholar]
  34. Liu J.-R., Tanner R. S., Schumann P. 7 other authors 2002; Emended description of the genus Trichococcus , description of Trichococcus collinsii sp. nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov. and of Ruminococcus palustris as Trichococcus palustris comb. nov. in the low-G+C Gram-positive bacteria. Int J Syst Evol Microbiol 52:1113–1126 [CrossRef]
    [Google Scholar]
  35. Lu J., Nogi Y., Takami H. 2001; Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297 [CrossRef]
    [Google Scholar]
  36. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  37. Morishita T., Tamura N., Makino T., Kudo S. 1999; Production of menaquinones by lactic acid bacteria. J Dairy Sci 82:1897–1903 [CrossRef]
    [Google Scholar]
  38. Nakagawa A., Kitahara K. 1959; Taxonomic studies on the genus Pediococcus . J Gen Appl Microbiol 5:95–126 [CrossRef]
    [Google Scholar]
  39. Nakamura K., Haruta S., Ueno S., Ishii M., Yokota A., Igarashi Y. 2004; Cerasibacillus quisquiliarum gen. nov., sp. nov. isolated from a semi-continuous decomposing system of kitchen refuse. Int J Syst Evol Microbiol 54:1063–1069 [CrossRef]
    [Google Scholar]
  40. Niimura Y., Yanagida F., Uchimura T., Ohara N., Suzuki K., Kozaki M. 1987; A new facultative anaerobic xylan-using alkalophile lacking cytochrome, quinone, and catalase. Agric Biol Chem 51:2271–2275 [CrossRef]
    [Google Scholar]
  41. Niimura Y., Koh E., Uchimura T., Ohara N., Kozaki M. 1989; Aerobic and anaerobic metabolism in a facultative anaerobe Ep01 lacking cytochrome, quinone and catalase. FEMS Microbiol Lett 61:79–84 [CrossRef]
    [Google Scholar]
  42. Niimura Y., Koh E., Yanagida F., Suzuki K.-i., Komagata K., Kozaki M. 1990; Amphibacillus xylanus gen. nov., sp. nov. a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301 [CrossRef]
    [Google Scholar]
  43. Ntougias S., Russell N. J. 2001; Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 51:1161–1170 [CrossRef]
    [Google Scholar]
  44. Ohama T. 1982; Cytochromes.. In Biseibustu-no Kagakubunrui Jikkenho ( Manual of Microbial Chemosystematics ) pp  210–224 Edited by Komagata K. Tokyo: Gakkai Shuppan Senta (Japan Scientific Societies Press; (in Japanese
    [Google Scholar]
  45. Okada S., Uchimura T., Kozaki M. 1992 Nyusankin Jikken Manyuaru ( Laboratory Manual for Lactic Acid Bacteria Tokyo: Asakura-shoten; (in Japanese
    [Google Scholar]
  46. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1984; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  47. Pritchard G. G., Wimpenny J. W. T. 1978; Cytochrome formation, oxygen-induced proton extrusion and respiratory activity in Streptococcus faecalis var. zymogenes grown in the presence of haematin. J Gen Microbiol 104:15–22 [CrossRef]
    [Google Scholar]
  48. Rhee S. K., Pack M. Y. 1980; Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus . J Bacteriol 144:217–221
    [Google Scholar]
  49. Ringø E., Gatesoupe F.-J. 1998; Lactic acid bacteria in fish: a review. Aquaculture 160:177–203 [CrossRef]
    [Google Scholar]
  50. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  51. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  52. Sakamoto M., Komagata K. 1996; Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 82:210–216 [CrossRef]
    [Google Scholar]
  53. Satomi M., Kimura B., Mizoi M., Sato T., Fujii T. 1997; Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836 [CrossRef]
    [Google Scholar]
  54. Schlesner H., Lawson P. A., Collins M. D., Weiss N., Wehmeyer U., Völker H., Thomm M. 2001; Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-d-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431
    [Google Scholar]
  55. Somogyi M. 1945; A new reagent for the determination of sugars. J Biol Chem 160:61–68
    [Google Scholar]
  56. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K.-H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp.nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496 [CrossRef]
    [Google Scholar]
  57. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  58. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  59. Toffin L., Zink K., Kato C., Pignet P., Bidault A., Bienvenu N., Birrien J.-L., Prieur D. 2005; Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int J Syst Evol Microbiol 55:345–351 [CrossRef]
    [Google Scholar]
  60. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  61. Wang H., Baldwin K. A. O'Sullivan D. J., McKay L. L. 2000; Identification of a gene cluster encoding Krebs cycle oxidative enzymes linked to the pyruvate carboxylase gene in Lactococcus lactis ssp. lactis C2. J Dairy Sci 83:1912–1918 [CrossRef]
    [Google Scholar]
  62. Whittenbury R. 1964; Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J Gen Microbiol 35:13–26 [CrossRef]
    [Google Scholar]
  63. Yamada T., Carlsson J. 1975; Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 124:55–61
    [Google Scholar]
  64. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120 [CrossRef]
    [Google Scholar]
  65. Yoon J.-H., Kang K. H., Park Y.-H. 2002; Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52:2043–2048 [CrossRef]
    [Google Scholar]
  66. Zhilina T. N., Garnova E. S., Tourova T. P., Kostrikina N. A., Zavarzin G. A. 2001; Amphibacillus fermentum sp. nov., Amphibacillus tropicus sp. nov., new alkaliphilic, facultatively anaerobic, saccharolytic bacilli from Lake Magadi. Microbiology (English translation of Mikrobiologiia ) 70:711–722
    [Google Scholar]
  67. Zhilina T. N., Garnova E. S., Tourova T. P., Kostrikina N. A., Zavarzin G. A. 2002; Amphibacillus fermentum sp. nov. and Amphibacillus tropicus sp. nov.In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM , List no. 85. Int J Syst Evol Microbiol 52:685–690 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63713-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63713-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error