1887

Abstract

A novel thermophilic, sulfur-oxidizing Gram-negative bacterium, designated strain SS-5, was isolated from the Calcite Hot Springs in Yellowstone National Park, USA. The cells were motile rods (1·2–2·8 μm long and 0·6–0·8 μm wide). The new isolate was a facultative heterotroph capable of using elemental sulfur or thiosulfate as an electron donor and O (1–18 %; optimum 6 %, v/v) as an electron acceptor. Hydrogen did not support growth. The isolate grew autotrophically with CO. In addition, strain SS-5 utilized various organic carbon sources such as yeast extract, tryptone, sugars, amino acids and organic acids. Growth was observed between 55 and 78 °C (optimum 70 °C; 3·5 h doubling time), pH 6·0 and 8·0 (optimum pH 7·5), and 0 and 0·6 % (w/v) NaCl (optimum 0 %). The G+C content of the genomic DNA was 32 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate was a member of the genus . On the basis of the physiological and molecular characteristics of the new isolate, we propose the name sp. nov. with SS-5 (=JCM 12773=OCM 840) as the type strain. In addition, emended descriptions of the genus , and are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63708-0
2005-11-01
2021-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2263.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63708-0&mimeType=html&fmt=ahah

References

  1. Aguiar P., Beveridge T. J., Reysenbach A.-L. 2004; Sulfurihydrogenibium azorense , sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39 [CrossRef]
    [Google Scholar]
  2. Baross J. A. 1995; Isolation, growth and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual Thermophiles pp  15–23 Edited by Robb F. T., R A. Place. Cold Springer; Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  3. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A.-L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  4. Hugenholtz P., Pitulle C., Hershberger K. J., Pace N. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
    [Google Scholar]
  5. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  6. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  7. Nakagawa S., Takai K., Horikoshi K., Sako Y. 2003; Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869 [CrossRef]
    [Google Scholar]
  8. Nakagawa S., Nakamura S., Inagaki F., Takai K., Shirai N., Sako Y. 2004; Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54:2079–2084 [CrossRef]
    [Google Scholar]
  9. Nakagawa T., Fukui M. 2003; Molecular characterization of community structures and sulfur metabolism within microbial streamers in Japanese hot springs. Appl Environ Microbiol 69:7044–7057 [CrossRef]
    [Google Scholar]
  10. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  11. Reysenbach A.-L. 2001; Family I. Aquificaceae fam. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn, p. 360. Edited by Boone D. R., Castenholz R. W., Garity G. M. Springer; London:
    [Google Scholar]
  12. Reysenbach A.-L., Seitzinger S., Kirshtein J., McLaughlin E. 1999; Molecular constraints on a high-temperature evolution of early life. Biol Bull 196:367–372 [CrossRef]
    [Google Scholar]
  13. Reysenbach A.-L., Ehringer M., Hershberger K. 2000; Microbial diversity at 83 °C in Calcite springs, Yellowstone National Park: another environment where the Aquificales and ‘ Korarchaeota ’ coexist. Extremophile 4:61–67
    [Google Scholar]
  14. Reysenbach A.-L., Götz D., Banta A., Jeanthon C., Fouquet I. 2002; Distribution of the Aquificales at deep-sea vents: expanding their distribution to the Mid-Atlantic Ocean and Indian Ocean. Cah Biol Mar 43:425–428
    [Google Scholar]
  15. Reysenbach A.-L., Banta A., Civello S. 10 other authors 2005; The Aquificales in Yellowstone National Park. In Geothermal Biology and Geochemistry in Yellowstone National Park: Workshop Proceedings from The Thermal Biology Institute's Yellowstone National Park Conference. October 2003 Bozeman, MT: Montana State University; (in press
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Skirnisdottir S., Hreggvidsson G. O., Hjörleifsdottir S., Marteinsson V. T., Petursdottir S. K., Host O., Kristjansson J. K. 2000; Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841 [CrossRef]
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  19. Stöhr R., Waberski A., Völker H., Tindall B. J., Thomm M. 2001; Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘ Hydrogenobacter/Aquifex ’. Int J Syst Evol Microbiol 51:1853–1862 [CrossRef]
    [Google Scholar]
  20. Swofford D. L. 2000 paup* – Phylogenetic Analysis Using Parsimony and other methods, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  21. Takacs C. D., Ehringer M., Favre R., Cermola M., Eggertsson G., Palsdottir A., Reysenbach A.-L. 2001; Phylogenetic characterization of the blue filamentous bacterial community from an Icelandic geothermal spring. FEMS Microbiol Ecol 35:123–128 [CrossRef]
    [Google Scholar]
  22. Takai K., Hirayama H., Sakihama Y., Inagaki F., Yamato Y., Horikoshi K. 2002; Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054 [CrossRef]
    [Google Scholar]
  23. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827 [CrossRef]
    [Google Scholar]
  24. Yamamoto H., Hiraishi A., Kato K., Chiura H. X., Maki Y., Shimizu A. 1998; Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63708-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63708-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error