1887

Abstract

A moderately thermophilic, anaerobic bacterium (strain SB91) was isolated from a freshwater hot spring at Barguzin Valley, Buryatiya, Russia. Cells of strain SB91 were straight to slightly curved rods, 0·5–0·6 μm in diameter and 3·0–7·0 μm in length. Formation of endospores was not observed. The temperature range for growth was 26–62 °C, with an optimum at 50 °C. The pH range for growth was 5·5–9·5, with an optimum at pH 7·5–8·0. The substrates utilized by strain SB91 in the presence of 9,10-anthraquinone 2,6-disulfonate included peptone, tryptone, Casamino acids, yeast extract, beef extract, casein hydrolysate, alanine plus glycine, alanine plus proline, -valine and n-propanol. Carbohydrates were not utilized. Strain SB91 reduced amorphous Fe(III) oxide, Fe(III) citrate, Fe(III) EDTA or Fe(III) nitrilotriacetate with peptone, -valine or n-propanol as an electron donor. Strain SB91 reduced 9,10-anthraquinone 2,6-disulfonate, thiosulfate, elemental sulfur, fumarate and selenite. Strain SB91 survived after exposure to gamma-radiation at a dose of 5·4 kGy. The G+C content of the DNA of strain SB91 was 33 mol%. Analysis of the 16S rRNA gene sequence revealed that the isolated organism belonged to cluster XII of the clostridia. On the basis of its physiological properties and the results of phylogenetic analyses, it is proposed that strain SB91 represents the sole species of a novel genus, ; the name gen. nov., sp. nov. is proposed, with strain SB91 (=DSM 16624=VKM B-2348) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63694-0
2006-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/2/369.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63694-0&mimeType=html&fmt=ahah

References

  1. Anderson R. T., Vrionis H. A., Ortiz-Bernad I. 10 other authors 2003; Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891 [CrossRef]
    [Google Scholar]
  2. Brim H., Venkateswaran A., Kostandarithes H. M., Fredrickson J. K., Daly M. J. 2003; Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582 [CrossRef]
    [Google Scholar]
  3. Chen M.-Y., Wu S.-H., Lin G.-H., Lu C.-P., Lin Y.-T., Chang W.-C., Tsay S.-S. 2004; Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  5. Ferreira A. C., Nobre M. F., Rainey F. A., Silva M. T., Wait R., Burghardt J., Chung A. P., da Costa M. S. 1997; Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947 [CrossRef]
    [Google Scholar]
  6. Jolivet E., L'Haridon S., Corre E., Forterre P., Prieur D. 2003; Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851 [CrossRef]
    [Google Scholar]
  7. Jolivet E., Corre E., L'Haridon S., Forterre P., Prieur D. 2004; Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227 [CrossRef]
    [Google Scholar]
  8. Lloyd J. R., Chesnes J., Glasauer S., Bunker D. J., Livens F. R., Lovley D. R. 2002; Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiol J 19:103–120 [CrossRef]
    [Google Scholar]
  9. Schnurer A., Schink B., Svensson B. H. 1996; Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152 [CrossRef]
    [Google Scholar]
  10. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [CrossRef]
    [Google Scholar]
  11. Suzuki K., Collins M. D., Iijima E., Komagata K. 1988; Chemotaxonomic characterization of a radiotolerant bacterium Arthrobacter radiotolerans : description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 5233–40 [CrossRef]
    [Google Scholar]
  12. Woese C. R., Achenbach L., Rouviere P., Mandelco L. 1991; Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14:364–371 [CrossRef]
    [Google Scholar]
  13. Yoshinaka T., Yano K., Yanaguchi H. 1973; Isolation of a highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric Biol Chem 37:2269–2275 [CrossRef]
    [Google Scholar]
  14. Zavarzina D. G., Tourova T. P., Kuznetsov B. B., Bonch-Osmolovskaya E. A., Slobodkin A. I. 2002; Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52:1737–1743 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63694-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63694-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error