1887

Abstract

A novel moderately thermophilic methanotroph, strain MYHT, was isolated from a hot spring in Japan. The isolate grew on methane or methanol at 37–67 °C, and optimally at 57–59 °C. It was found to be a Gram-negative aerobe, with colourless colonies of non-motile coccoid cells, possessing type I intracytoplasmic membranes and regularly arranged surface layers of linear (2) symmetry. Strain MYHT expressed only the particulate methane monooxygenase and employed the ribulose monophosphate pathway for formaldehyde assimilation. It is a neutrophilic and halotolerant organism capable of growth at pH 6·5–7·5 (optimum pH 6·8) and in up to 3 % NaCl (optimum 0·5–1 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequence analysis indicated that strain MYHT is most closely related to the thermophilic undescribed methanotroph ‘’ HB (91 % identity) and the novel halophilic methanotroph 10Ki (90 % identity). Comparative sequence analysis of particulate methane monooxygenase () genes also confirmed the clustering of strain MYHT with ‘’ HB and 10Ki (98 and 92 % derived amino acid sequence identity, respectively). The DNA G+C content was 62·5 mol%. The major cellular fatty acids were C (37·2 %) and C 9 (35·2 %) and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major ubiquinone was Q-8. On the basis of comparative phenotypic and genotypic characteristics, a new genus and species, gen. nov., sp. nov., is proposed, with MYHT as the type strain (=VKM B-2345=IPOD FERM P-19714).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63691-0
2005-09-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551877.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63691-0&mimeType=html&fmt=ahah

References

  1. Baxter N. J., Hirt R. P., Bodrossy L., Kovacs K. L., Embley T. M., Prosser J. I., Murrell J. C. 2002; The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch Microbiol 177:279–289 [CrossRef]
    [Google Scholar]
  2. Bodrossy L., Murrell J. C., Dalton H., Kalman M., Puskas L. G., Kovacs K. L. 1995; Heat-tolerant methanotrophic bacteria from the hot-water effluent of a natural-gas field. Appl Environ Microbiol 61:3549–3555
    [Google Scholar]
  3. Bodrossy L., Holmes E. M., Holmes A. J., Kovacs K. L., Murrell J. C. 1997; Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503 [CrossRef]
    [Google Scholar]
  4. Bodrossy L., Kovács K. L., McDonald I. R., Murrell J. C. 1999; A novel thermophilic methane-oxidizing γ -Proteobacterium. FEMS Microbiol Lett 170:335–341
    [Google Scholar]
  5. Bourne D. G., McDonald I. R., Murrell J. C. 2001; Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809 [CrossRef]
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  7. Dedysh S. N., Ricke P., Liesack W. 2004; NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150:1301–1313 [CrossRef]
    [Google Scholar]
  8. Doronina N. V., Darmaeva T. D., Trotsenko Y. A. 2003; Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake. Int J Syst Evol Microbiol 53:223–229 [CrossRef]
    [Google Scholar]
  9. Eshinimaev B. Ts., Medvedkova K. A., Khmelenina V. N., Suzina N. E., Osipov G. A., Lysenko A. M., Trotsenko Y. A. 2004; New thermophilic methanotrophs of the genus Methylocaldum . Mikrobiologiia 73:530–539 (in Russian
    [Google Scholar]
  10. Foster J. W., Davis R. H. 1966; A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J Bacteriol 91:1924–1931
    [Google Scholar]
  11. Giovannoni S. J. 1991; The polymerase chain reaction. In Nucleic Acid Techniques in Bacterial Systematics pp  177–203 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  12. Govorukhina N. I., Trotsenko Y. A. 1989; Phospholipid composition of methylotrophic bacteria. Microbiology (English translation of Mikrobiologiia ) 58:318–323
    [Google Scholar]
  13. Graham D. W., Korich D. G., LeBlanc R. P., Sinclair N. P., Arnold R. G. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:2231–2236
    [Google Scholar]
  14. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  15. Heyer J., Berger U., Hardt M., Dunfield P. F. 2005; Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826 [CrossRef]
    [Google Scholar]
  16. Higgins D. G., Sharp P. M. 1988; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244 [CrossRef]
    [Google Scholar]
  17. Kalyuzhnaya M. G., Khmelenina V. N., Kotelnikova S., Holmquist L., Pedersen K., Trotsenko Y. A. 1999; Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572 [CrossRef]
    [Google Scholar]
  18. Khmelenina V. N., Kalyuzhnaya M. G., Sakharovsky V. G., Suzina N. E., Trotsenko Y. A., Gottschalk G. 1999; Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172:321–329 [CrossRef]
    [Google Scholar]
  19. Malashenko Y. R. 1976; Isolation and characterization of new species (thermophilic and thermotolerant ones) of methane-utilizers. In Microbial Growth on C1 Compounds pp  293–300 Edited by Schlegel H.G., Gottshalk G., Pfenning N. Gottingen: E. Goltze KG;
    [Google Scholar]
  20. Malashenko Y. R., Romanovskaya V. A., Bogachenko V. N., Shved A. D. 1975; Thermophilic and thermotolerant methane-assimilating bacteria. Mikrobiologiia 44:855–862 (in Russian
    [Google Scholar]
  21. Murrell J. C., McDonald I. R., Bourne D. G. 1998; Molecular methods for the study of methanotroph ecology. FEMS Microbiol Ecol 27:103–114 [CrossRef]
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Sokolov A. P., Trotsenko Y. A. 1995; Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol Ecol 18:299–304 [CrossRef]
    [Google Scholar]
  24. Trotsenko Y. A., Khmelenina V. N. 2002; Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131 [CrossRef]
    [Google Scholar]
  25. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  26. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63691-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63691-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error