1887

Abstract

A yellow-pigmented bacterium designated strain GUM-Kaji was isolated from a lactic acid beverage. The strain had Gram-negative, non-motile, rod-shaped cells. It was strictly aerobic and chemo-organotrophic and grew at 5–30 °C and at pH 5–8. The major components of the non-polar and 3-hydroxy fatty acids were C15 : 0 iso and 3-OH-C17 : 0 iso, respectively. Menaquinone MK-6 was detected as the sole quinone. 16S rRNA gene sequence comparisons revealed that strain GUM-Kaji is affiliated to the genus , with as its phylogenetic neighbour, but there were low levels of similarity (<96 %) to any established species of the genus. The G+C content of the genomic DNA was 36·6 mol%. The novel bacterium differed from any known species of in terms of a number of phenotypic properties. Thus, the name sp. nov. is proposed for this novel bacterium. The type strain is strain GUM-Kaji (=BAMY 1001=NCIMB 14047=DSM 17126).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63690-0
2005-09-01
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551903.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63690-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  3. Hugo C. J., Segers P., Hoste B., Vancanneyt M., Kersters K. 2003; Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771–777 [CrossRef]
    [Google Scholar]
  4. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef]
    [Google Scholar]
  5. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [CrossRef]
    [Google Scholar]
  6. Kim K. K., Bae H.-S., Schumann P., Lee S.-T. 2005a; Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55:133–138 [CrossRef]
    [Google Scholar]
  7. Kim K. K., Kim M.-K., Lim J. H., Park H. Y., Lee S.-T. 2005b; Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287–1293 [CrossRef]
    [Google Scholar]
  8. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  9. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T. 2003; Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26:523–528 [CrossRef]
    [Google Scholar]
  10. Nishijima M., Araki-Sakai M., Sano H. 1997; Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122 [CrossRef]
    [Google Scholar]
  11. Reichenbach H. 1989; Order I. Cytophagales Leadbetter 1974. In Bergey's Manual of Systematic Bacteriology vol 3 pp  2011–2013 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  12. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  13. Shen F.-T., Kämpfer P., Young C.-C., Lai W.-A., Arun A. B. 2005; Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55:1301–1304 [CrossRef]
    [Google Scholar]
  14. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S RNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  15. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  16. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44827–831 [CrossRef]
    [Google Scholar]
  17. Yamaguchi S., Yokoe M. 2000; A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343 [CrossRef]
    [Google Scholar]
  18. Young C. C., Kämpfer P., Shen F. T., Lai W. A., Arun A. B. 2005; Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63690-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63690-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error