1887

Abstract

The taxonomic identity of the hereditary prokaryotic symbiont of the olive fly (Diptera: Tephritidae) was investigated. In order to avoid superficial microbial contaminants and loosely associated saprophytic biota, flies were surface-sterilized at the larval stage and reared under aseptic conditions until adult emergence. flies originating from different geographical locations and collected at different times of the year were tested. Bacterial isolation was undertaken from the cephalic oesophageal bulb, which is known to be a specific site of accumulation for the hosted microsymbionts in the adult insect. Despite evidence of multiplication cycles taking place within the insect, attempts at cultivation of the isolated bacteria were not productive at any stage, leading to the choice of unculturable status definition. PCR amplification and nucleotide sequencing of the entire 16S rRNA gene consistently yielded a single sequence that displayed marked similarity with enterobacterial lineages, with closest matches (97 %) to and . The novel taxon differs from common intestinal bacterial species of fruit flies and from instances of culturable bacteria previously described in raised without sterility precautions, which we also observed as minority occupants or occasional contaminants. The symbiont's identity is also distinct from . In all observations, the numerically dominant inhabitant of the olive fly oesophageal organ was the same unculturable organism, whose presence at later stages was also regularly observed in the midgut. A novel species is proposed, by virtue of its unique properties, under the designation ‘ Erwinia dacicola’.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63653-0
2005-07-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551641.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63653-0&mimeType=html&fmt=ahah

References

  1. Baumann, P. & Moran, N. A. ( 1997; ). Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie van Leeuwenhoek 72, 39–48.[CrossRef]
    [Google Scholar]
  2. Baumann, P., Baumann, L., Lai, C. Y., Rouhbakhsh, D., Moran, N. A. & Clark, M. A. ( 1995; ). Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49, 55–94.[CrossRef]
    [Google Scholar]
  3. Belcari, A., Sacchetti, P., Marchi, G. & Surico, G. ( 2003; ). La mosca delle olive e la simbiosi batterica. Infect Fitopatol 9, 55–59 (in Italian).
    [Google Scholar]
  4. Breznak, J. A. & Brune, A. ( 1994; ). Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39, 453–487.[CrossRef]
    [Google Scholar]
  5. Buchner, P. ( 1965; ). Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience.
  6. Cole, J. R., Chai, B., Marsh, T. L. & 8 other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  7. Commonwealth Institute of Entomology ( 1996; ). Distribution Maps of Pests, Series A, Map no. 74 (1st revision), Bactrocera oleae (Gmelin). London: Commonwealth Institute of Entomology.
  8. de Vries, E. J., Breeuwer, J. A. J., Jacobs, G. & Mollema, C. ( 2001; ). The association of Western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: transient or permanent? J Invertebr Pathol 77, 120–128.[CrossRef]
    [Google Scholar]
  9. Douglas, A. E. ( 1998; ). Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43, 17–37.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  11. Girolami, V. ( 1973; ). Reperti morfo-istologici sulle batteriosimbiosi del Dacus oleae Gmelin e di altri ditteri tripetidi, in natura e negli allevamenti su substrati artificiali. Redia 54, 269–294 (in Italian).
    [Google Scholar]
  12. Girolami, V. & Cavalloro, R. ( 1972; ). Aspetti della simbiosi batterica di Dacus oleae (Gmelin) in natura e negli allevamenti di laboratorio. Ann Soc Entomol Fr 8, 561–571 (in Italian).
    [Google Scholar]
  13. Hagen, K. S. ( 1966; ). Dependence of the olive fly, Dacus oleae, larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature 209, 423–424.[CrossRef]
    [Google Scholar]
  14. Hagen, K. S. & Tassan, R. L. ( 1972; ). Exploring nutritional roles of extracellular symbiotes on the reproduction of honeydew feeding adult chrysopids and tephritids. In Insect and Mite Nutrition: Significance and Implications in Ecology and Pest Management, pp. 323–351. Edited by J. G. Rodriguez. Amsterdam: North-Holland.
  15. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  16. Hellmuth, H. ( 1956; ). Untersuchungen zur Bakteriensymbiose der Trypetiden (Diptera). Z Morphol Oekol Tiere 44, 438–517 (in German).
    [Google Scholar]
  17. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  18. Lloyd, A. C., Drew, R. A. I., Teakle, D. S. & Hayward, A. C. ( 1986; ). Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruit in Queensland. Aust J Biol Sci 39, 361–368.
    [Google Scholar]
  19. Manousis, T. & Ellar, D. J. ( 1988; ). Dacus oleae microbial symbionts. Microbiol Sci 5, 149–152.
    [Google Scholar]
  20. Mazzini, M. & Vita, G. ( 1981; ). Identificazione submicroscopica del meccanismo di trasmissione del batterio simbionte in Dacus oleae (Diptera, Trypetidae). Redia 64, 277–301 (in Italian).
    [Google Scholar]
  21. Moran, N. A. & Baumann, P. ( 2000; ). Bacterial endosymbionts in animals. Curr Opin Microbiol 3, 270–275.[CrossRef]
    [Google Scholar]
  22. Murray, R. G. E. & Stackebrandt, E. ( 1995; ). Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45, 186–187.[CrossRef]
    [Google Scholar]
  23. O'Neill, S. L., Hoffman, A. & Werren, J. H. ( 1997; ). Influential Passengers. Oxford: Oxford University Press.
  24. Palmano, S., Firrao, G. & Locci, R. ( 2000; ). Sequence analysis of domains III and IV of the 23S rRNA gene of verticillate streptomycetes. Int J Syst Evol Microbiol 50, 1187–1191.[CrossRef]
    [Google Scholar]
  25. Petri, L. ( 1909; ). Ricerche Sopra i Batteri Intestinali della Mosca Olearia. Roma: Memorie della Regia Stazione di Patologia Vegetale di Roma (in Italian).
  26. Rossiter, M. A., Howard, D. J. & Bush, G. L. ( 1983; ). Symbiotic bacteria of Ragoletis pomonella. In Fruit Flies of Economic Importance, pp. 77–82. Edited by R. Cavalloro. Rotterdam: A. A. Balkema.
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Smith, D. C. & Douglas, A. E. ( 1987; ). The Biology of Symbiosis. London: Edward Arnold.
  29. Tsiropoulos, G. J. ( 1980; ). Major nutritional requirements of adult Dacus oleae. Ann Entomol Soc Am 73, 251–253.[CrossRef]
    [Google Scholar]
  30. Tsiropoulos, G. T. ( 1983; ). Microflora associated with wild and laboratory-reared adult olive fruit flies, Dacus oleae (Gmelin). Z Angew Entomol 96, 337–340.
    [Google Scholar]
  31. von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. ( 2001; ). Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436.[CrossRef]
    [Google Scholar]
  32. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  33. Werren, J. H., Zhang, W. & Guo, L. R. ( 1995; ). Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261, 55–63.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63653-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63653-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error